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ABSTRACT 

The overarching aim of this work was to utilise modelling and simulation 

methodology to obtain a better understanding of clinical data generated from 

or in red blood cells (RBCs). It focussed on RBC survival and the use of RBCs as 

a matrix for pharmacokinetic (PK) data. 

 

Firstly, a novel statistical model for RBC survival was developed based on 

prior knowledge of the underlying physiological mechanisms using a bottom-

up model building approach. The model was developed within the statistical 

framework of survival analysis and uses a highly flexible probability density 

function to describe a hypothetical RBC lifespan distribution that is able to 

account for plausible physiological processes of RBC destruction. These 

mechanisms include death due to old age (senescence), random destruction, 

and early or delayed failure.  

The model was extended to describe in vivo RBC survival studies using 

different RBC labelling techniques and flaws inherent in the most commonly 

used labelling methods. Using an information theoretical approach, it was 

determined that full parameter estimation would be possible based on ideal 

labelling methods, but also based on the currently available, flawed labelling 

methods under an optimised study design with an intensive sampling strategy.  

The model was applied to in vivo RBC survival data obtained in patients 

with chronic kidney disease (CKD) as well as healthy controls (using data 

obtained from the work of other investigators). RBC survival was found to be 

significantly reduced in CKD patients compared to controls, and the results 

suggest that increased random destruction is the likely cause of this reduction 

rather than accelerated senescence. 

 

Secondly, a catenary compartment model describing the intracellular 

population PK of methotrexate (MTX) and its polyglutamated metabolites 

(MTXPGs) in RBCs was developed using a data driven, top-down modelling 
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approach. Model development was based on data obtained from 48 patients 

with rheumatoid arthritis (RA) receiving once weekly low-dose MTX. The 

developed model was used to test different hypotheses related to the 

mechanism of enzymatic deglutamation of MTXPGs, the loss of MTXPGs from 

RBCs, and the significance of genotypic and phenotypic covariates. 

The final model was able to describe the time profiles of MTX and 

MTXPGs inside RBCs in all 48 patients, and thus can form the basis of a full 

pharmacokinetic-pharmacodynamic (PKPD) model for low-dose MTX 

treatment in RA in future work. Such a PKPD model could be used to assess 

whether RBC MTX or MTXPG concentrations are suitable biomarkers to 

monitor low-dose MTX treatment, which is currently debated in literature. 

 

In conclusion, two different approaches were successfully applied in this 

thesis to develop mathematical models that are able to describe different types 

of RBC derived clinical data: a novel statistical RBC survival model that is able 

to provide a deeper insight into physiological processes of RBC destruction in 

the future, and a compartmental PK model describing the intracellular 

accumulation of MTX and MTXPGs in RBCs that can form the basis of a full 

PKPD model in further work. 
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LRT likelihood ratio test 
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MCMC Markov Chain Monte Carlo 
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PKPD pharmacokinetic(s)-pharmacodynamic(s) 
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VARIABLES & SYMBOLS 

a indicator variable for a genotypic covariate in the MTX RBC PK model , i.e. a = 

(0, 1) 

A amount of drug in a compartment 

AHb total amount of haemoglobin in the body 

b indicator variable for a genotypic covariate in the MTX RBC PK model , i.e. b = 

(0, 1) 

b day of birth of the bth cohort of RBCs in the RBC survival model 

c constant hazard rate in the RBC lifespan/survival model 

C concentration 

Ce concentration in the effect compartment 

CL clearance 

CL1 clearance of MTX in the MTX plasma PK model 

CLGluX clearance of MTXGluX from RBCs in the MTX RBC PK model 

cov indicator variable for a covariate in the RBC survival model, i.e. cov = (0, 1) 

COV value of a continuous covariate 

CVprop coefficient of variation of a proportional error 

CV2
prop squared coefficient of variation of a proportional error 

D dose 

E effect 

EC50 drug concentration resulting in half-maximum effect 

Eff D-efficiency 

Emax maximum effect 

E0 baseline effect 

f fraction of renally cleared MTX 

F bioavailability in the MTX PK model 

F bioavailability 

F(t) cumulative distribution function 

f() mathematical function; structural model; probability density function 

fFW(t) flexible Weibull distribution (pdf) 

fMIX(t) combined pdf of the RBC lifespan model 

fRAW(t) reduced additive Weibull distribution (pdf) 

g() additional function required for rejection sampling 

h(t) hazard function 

H(t) cumulative hazard function 

i index for individual (human or RBC), i.e. i = (1, … N) 

I intermediate in a turnover PKPD model 

I identity matrix 

j index for observation, i.e. j = (1, … ni) for the ith individual 

J Jacobian matrix 
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ka first-order absorption rate constant 

ka first-order absorption rate constant in the MTX plasma PK model  

kel first-order elimination rate constant 

kel first-order elimination rate constant in the MTX plasma PK model  

keq first-order equilibrium rate constant in an effect compartment PKPD model 

kFPGSX first-order rate constant of polyglutamation converting MTXGluX to 

MTXGlu(X+1) in the MTX RBC PK model 

kin first-order rate constant of input in a TC model 

kin first-order rate constant of MTX uptake into RBCs in the MTX RBC PK model 

kout first-order elimination rate 

kout,GluX first-order rate constant of MTXGluX loss from RBCs in the MTX RBC PK 

model 

kp production rate constant of RBCs in the RBC lifespan/survival model 

*
pk  

production rate of RBCs in the RBC survival model corrected for reuse of a 

cohort label 

kRD first-order rate constant of random destruction in a TC model 

kTR first-order rate constant of transit in a TC model 

kv vesiculation rate constant in the RBC survival model 

kxy first-order intercompartmental transfer rate constant from compartment x to 

compartment y 

kxy first-order intercompartmental transfer rate constant from compartment x to 

compartment y in the MTX plasma PK model 

kGHX first-order rate constant of deglutamation converting MTXGluX to MTXGlu(X-

1) in the MTX RBC PK model 

kGHXY first-order rate constant of deglutamation converting MTXGluX to MTXGluY 

in the MTX RBC PK model 

L likelihood 

L  calculated mean lifespan 

log natural logarithm 

lossb loss of label between day b-1 and b in the RBC survival model 

LS mean RBC lifespan in a TC model 

LSapp apparent mean RBC lifespan 

LSi lifespan of the ith RBC in the RBC lifespan model 

m mixing parameter in the RBC lifespan/survival model 

MF Fisher Information matrix 

N total number of individuals (humans or RBCs) 

NC number of transit compartments 

NCL(t) total number of labelled RBCs at time t after loss due to vesiculation and 

including reuse in the RBC survival model for a cohort labelling method 

Nd(t) total number of surviving RBCs at time t after loss due to decay in the RBC 

survival model 



Preface  

xxxv  

 

Ne(t) total number of surviving RBCs at time t after loss due to elution in the RBC 

survival model 

n total number of observations 

ni total number of observations in the ith individual 

np total number of parameters 

nrCL1 non-renal clearance of MTX in the MTX plasma PK model 

NRBCs(t) number of living RBCs at time t in the RBC lifespan/survival model 

NRL(t) total number of labelled RBCs at time t after loss due to vesiculation, decay and 

elution in the RBC survival model for a random labelling method 

NSI normalised sensitivity index 

Nv(t) total number of surviving RBCs at time t after loss due to vesiculation in the 

RBC survival model 

N0 total number of labelled RBCs at time 0 

p index for parameter, i.e. p = (1, … np) 

P probability 

Q conditional expectation of the log likelihood 

r ratio f(x)/g(x) calculated for rejection sampling 

r1 

} reduced lifespan parameters in the RBC lifespan/survival model 
r2 

rCL1 renal clearance of MTX in the MTX plasma PK model 

reuseb number of reused label on day b in the RBC survival model 

rf fraction of lost label that is reused on the next day in the RBC survival model 

Rin rate of production / input 

Rout rate of elimination / loss 

IR+ set of all positive real numbers 

s standard deviation 

s1 

} senescence parameters in the RBC lifespan/survival model 
s2 

S sensitivity 

S(t) survival function 

t time 

tBi day of “birth” of the ith RBC in the RBC lifespan model 

tBmax time until “birth” of RBCs occurs in the RBC lifespan model 

tlag lag time in the MTX PK model 

tL time point of labelling in the RBC survival model 

t1/2app apparent half-life 

t1/2Cr half-life of 51Cr = 27.7025 days 

t1/2el half-life of elution of 51Cr = 70 days 

T transpose 

T survival time, time of event 

T time space 
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v control factor for rate of vesiculation with v = (1, 2) 

V volume of distribution 

V population covariance matrix 

Vblood total blood volume 

VGluX apparent volume of distribution of MTXGluX inside RBCs in the MTX RBC PK 

model 

VRBCs total volume of RBCs 

V1 apparent volume of distribution of the central compartment in the MTX 

plasma PK model 

w weight 

x independent variable 

X n-by-np matrix of independent variables 

y observation / dependent variable 

Y n-by-1 vector of dependent variables 

z variable of integration over time in LIDR models 

Z indicator variable for living & non-living RBCs in the RBC lifespan model 

 weighting parameter in the HClnD criterion 

 covariate coefficient 

 level of change in the parameter estimate for a sensitivity analysis 

 difference 

 residual unexplained variability 

 any parameter in a model (fixed or random effect) 

  mean of any parameter obtained in bootstrap analysis (fixed or random effect) 

̂ 
estimate of any parameter in a model (fixed or random effect) 

  vector of all parameters (fixed or random effects) 

 parameter space 

 Hill coefficient 

 random effect (scalar) 

 random effects (vector or matrix) 

 constant hazard rate 

1 first exponent in a sum of exponentials 

2 second exponent in a sum of exponentials 

 RBC lifespan distribution  

θ  fixed effect parameter (scalar) 

θ  population mean fixed effect parameter (scalar) 

θ̂  fixed effect parameter estimate (scalar) 

θ
ˆ

 population mean fixed effect parameter estimate (scalar) 

θ  np-by-1 vector of fixed effect parameter values 

θ  np-by-1 vector of (calculated) population mean fixed effect parameters  

θ̂  np-by-1 vector of fixed effect parameter estimates 

θ
ˆ

 np-by-1 vector of population mean estimates for fixed effect parameters 
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 parameter space of fixed effects 

2
add variance of an additive error 

add standard deviation of an additive error 

 error matrix 

 variable of integration over time in the RBC survival model 

  step size in the SAEM algorithm 

2
  element of the variance-covariance matrix (scalar) 

 between subject variance (scalar) 

 variance-covariance matrix (dimensions np-by-np) 

D
  D-optimal design criterion 


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AIM & STRUCTURE OF THE THESIS 

The overarching aim of this work was to utilise modelling and simulation 

methodology to obtain a better understanding of clinical data generated from 

or in red blood cells (RBCs) with respect to: 

 RBC survival and physiological mechanisms of RBC destruction. 

 RBCs as matrix for biomarker data with an application to the 

pharmacokinetics of low-dose methotrexate (MTX) treatment in 

rheumatoid arthritis. 

For this purpose, the thesis has been divided into five parts (Table P.1). 

First, an introduction to the field of modelling and simulation and the methods 

used in this thesis is given in Part I. Background information on RBC survival 

and physiology, as well as an overview of the pharmacokinetics and 

pharmacodynamics of MTX relevant to this thesis are also provided in this 

part.  

Second, the development, assessment and application of a novel statistical 

model for RBC survival based on plausible physiological mechanisms of RBC 

destruction in the human body is described in Part II which comprises three 

chapters. A so-called bottom-up approach was used here, where model 

development is based on an understanding of the underlying physiological 

mechanisms and not dependent on data.  

Part III consists of two chapters and covers modelling of clinical data to 

describe the pharmacokinetics of low-dose MTX based on drug concentrations 

measured in RBCs. In this part, model development is primarily data driven, 

also known as a top-down approach. The developed model is then used to test 

different hypotheses related to the underlying mechanisms of intracellular 

MTX accumulation as well as to assess the significance of genotypic and 

phenotypic covariates. 

Part VI integrates both approaches by concluding this thesis with a 

discussion of the findings and future prospects.  
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Lastly, the appendices in Part V contain additional material including 

MATLAB and NONMEM codes related to the individual chapters as well as 

a list of all references. 

 

Table P.1:  Structure of this thesis. 

Part I Introduction 

 Chapter 1 – Introduction 

Part II Red blood cell survival model 

 Chapter 2 – A statistical model for red blood cell survival time 

 Chapter 3 – Evaluation of red blood cell labelling methods 

 Chapter 4 – Modelling red blood cell survival data 

Part III Pharmacokinetics of methotrexate in red blood cells 

 
Chapter 5 – A population pharmacokinetic model for 

methotrexate measured in red blood cells  

 
Chapter 6 – Hypotheses testing for methotrexate 

pharmacokinetics in red blood cells 

Part IV Discussion & Future Prospects 

 Chapter 7 – Discussion & Future Prospects 

Part V Appendices 

 Appendix 1 – Appendix to Chapter 1 

 Appendix 2 – Appendix to Chapter 2 

 Appendix 3 – Appendix to Chapter 3 

 Appendix 4 – Appendix to Chapter 4 

 Appendix 5 – Appendix to Chapter 5 

 Appendix 6 – Appendix to Chapter 6 

 References 
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1.1. Model based analysis of clinical data 

This introduction provides an overview of model based analysis of 

clinical data, with emphasis on the methodology applied in modelling and 

simulation in the area of population pharmacokinetic-pharmacodynamic 

(PKPD) modelling. For general references to this section refer to [1-4]; specific 

references will be indicated as appropriate. 

1.1.1. Models & Model development 

1.1.1.1. Models 

In this thesis, the term “model” refers to a mathematical description of a 

system given by a function f, that relates the input (a n-by-np matrix of 

independent variables X) with an outcome (a n-by-1 vector of dependent 

variables Y) via the parameters θ  (np-by-1 vector of estimable regression 

parameters) and accounts for a residual error  (vector of the same size as Y). 

Note, that in this thesis matrices and vectors will be denoted by bold symbols. 

  εXθY  , f  

Equation 1.1: General form of a mathematical model. 

Models are simplified descriptions of reality. They can be used to describe 

data arising from a system, to learn about the system itself, to generate and test 

hypotheses and to predict future outcomes based on what-if scenarios. 

However, a single model does not necessarily have to fulfil all of these criteria, 

and it is crucial to take into account the purpose of the model, i.e. its intended 

application, when choosing between competing models during the model 

development process. 
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1.1.1.2. Model development 

The purpose of model development is to find the function f that describes 

the relationship between X and Y and to determine the corresponding 

parameters θ  that describe this relationship quantitatively. 

Models can be developed in two different ways:  

 using a top-down approach, or  

 using a bottom-up approach. 

1.1.1.2.1. Top-down approach 

A top-down approach starts with data. Subsequently, an empirical model 

is developed that best describes the data. Usually, this is done with emphasis 

on the principle of parsimony, meaning the simplest model describing the data 

sufficiently well is preferred. Common empirical models are based on a sum of 

exponentials or on polynomials, using the lowest possible number of 

exponentials or polynomials. However, empirical models do not directly relate 

to the underlying mechanisms that gave rise to the data and therefore do not 

allow for making inferences on these mechanisms. 

Knowledge of the underlying system can however help making decisions 

during a top-down model building process. Incorporating such prior 

knowledge leads to semi-empirical models that allow for some mechanistic 

interpretation. Typical examples of semi-empirical models are compartmental 

pharmacokinetic (PK) models. These models do not relate in detail to all 

physiological mechanisms involved in absorption, distribution and elimination 

of a drug in the body, but provide a parsimonious, simplified mathematical 

description of the time course of the drug concentrations in the body while still 

retaining some mechanistic aspects. Compartmental PK models themselves 

will be introduced in more detail later on (Section 1.1.2.1.2). 
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1.1.1.2.2. Bottom-up approach 

A bottom-up approach on the other hand uses prior knowledge about a 

system to develop a model. It does not require data a priori and is not 

necessarily bound to the principle of parsimony. The resulting models are often 

called “system models” or “mechanistic models”, and are usually more 

complex than empirical models. 

However, prior knowledge of all underlying mechanisms might not be 

available during model development, or the complexity of a full mechanistic 

model might escalate beyond reason with respect to the intended purpose of 

the model. Under these circumstances, semi-mechanistic models are often 

developed which also include empirical aspects. These models are simpler than 

fully mechanistic models, but incorporate the key mechanisms that are of 

interest in the modelling analysis and therefore allow making direct inference 

about these mechanisms from the model. 

Ultimately, mechanistic as well as semi-mechanistic models need to be 

tested, i.e. applied to data, to evaluate their credibility. This data needs to be 

informative for the processes described in the model. Such information rich 

data can be difficult to obtain clinically or simply be unavailable. 

 

In this thesis, both types of model building approaches have been applied. 

In the first chapter of Part II (Chapter 2), a semi-mechanistic statistical model 

for red blood cell (RBC) survival was developed using a bottom-up approach. 

Prior knowledge of RBC destruction in the human body was used to develop a 

statistical survival model independent from data. The theoretical aspects of the 

model were explored in Chapter 3 and the model was finally tested for its 

ability to describe clinical data in Chapter 4. Part III describes the top-down 

development of a semi-empirical population PK model for methotrexate (MTX) 

and its metabolites based on data measured inside RBCs and using a classical 

compartmental analysis. 
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1.1.1.2.3. BEG principle 

Selecting an appropriate model is essential in the model developing 

process to ensure that the final model can fulfil its intended purpose. However, 

it needs to be noted that there will never be a “true” model as George E. P. Box 

has famously noted [5]: 

 “Essentially, all models are wrong, but some are useful.” 

A useful guidance for a more relaxed parsimonious selection of empirical 

models is the BEG principle, which comprises three quotes:  

1. Box’s quote mentioned above 

2. Einstein’s modification of Ockham’s razor on parsimony [year 

unknown]: 

 “A scientific theory should be as simple as possible, but not simpler.” 

3. Gelman’s call for appropriateness [6]: 

 “Do the model’s deficiencies have a noticeable effect on the substantive inferences?” 

In other words, a model should be as simple as possible while still being 

able to fulfil its purpose without leading to biased inferences and conclusions. 

1.1.2. Pharmacokinetics and Pharmacodynamics  

Here, a brief introduction to the basic concepts of pharmacokinetics (PK) 

and pharmacodynamics (PD) as well as common models used to describe these 

will be given.  

The description of PK data analysis methods will focus on the 

compartment model approach. This approach is applied in the third part of this 

thesis for the development of the population PK model for RBC MTX 

concentrations. 

PD data analysis is not part of this thesis, but the ultimate goal for future 

work is to extend the RBC MTX PK model towards a full PKPD model. Thus, a 

brief overview of PD and PKPD is given in Section 1.1.2.2 and Section 1.1.2.3, 

respectively, for the sake of completeness. 

 



Chapter 1: Introduction 

 10 

 

1.1.2.1. Pharmacokinetics 

In short: “Pharmacokinetics is what the body does to the drug” [7]. More 

appropriately, PK describes the relationship between the dose of a drug and its 

concentration in the body as a function of time.  

1.1.2.1.1. Time course of drug concentration 

The time course of drug concentrations in the body after administration of 

a drug is governed by four processes, known as the ADME scheme:  

 Absorption: uptake of the drug into the systemic circulation after 

administration, passive via diffusion across membranes or active via 

transport mechanisms.  

 Distribution: dispersion of the drug in the body tissues after 

absorption. 

 Metabolism: transformation of the drug via chemical reactions. 

 Excretion: removal of the drug (and its metabolites) from the body. 

Metabolism and excretion together result in elimination of the drug.  

For a PK analysis, drug concentrations in the body can be measured in 

different matrices, but most commonly (due to convenience) concentrations in 

plasma are obtained. 

In mathematical terms, PK then describes the plasma concentration C of a 

drug as function of the administered dose over time t dependent on the 

parameters  PK
θ : 

    PK
θ,, tdoseftC PK  

Equation 1.2: Basic equation for pharmacokinetic models. 

A PK modelling analysis aims to find the function f and the 

corresponding estimates of the PK parameters  PK
θ that describe the 

relationship between the dose of a particular drug and its plasma concentration 

over time. Common PK parameters of interest are clearance (CL), the apparent 

volume of distribution (V), and the elimination rate constant kel, which is equal 
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to CL/V. In addition, the absorption rate constant (ka) and the oral 

bioavailability (F) are usually of interest for drugs that can be administered 

orally.  

A standard approach is to use compartment models for this type of 

modelling analysis. These models will be described in the following section 

using several examples. In these examples it is assumed that the drug follows 

linear PK, which means that Equation 1.2 is linear with respect to dose. 

Although this is true for the majority of drugs, non-linear PK can occur as well, 

e.g. if the absorption, distribution, elimination and/or metabolism of the drug 

involves active and therefore saturable transport mechanisms or enzymatic 

processes, or if the drug itself induces or inhibits its metabolism and/or 

elimination in a concentration dependent manner. 

1.1.2.1.2. Compartment models for PK analysis 

Compartment PK models are semi-empirical models where the body is 

described by a finite number of disposition compartments, commonly not more 

than three. These compartments do not necessarily reflect true body tissues 

although associations can be made. The simplest model is a one-compartment 

model, consisting of a central compartment, e.g. the plasma and other rapidly 

equilibrating tissues, from which samples are taken (Figure 1.1). Note that only 

the disposition compartments are shown in the following schemata, while 

absorption compartments are omitted for simplification purposes. 

For a one-compartment model it is assumed that the drug distributes in 

all body tissues proportionally to its distribution in the central compartment. 

The resulting PK profile for a drug with first-order elimination after an 

intravenous (i.v.) bolus dose is monoexponential (Equation 1.3, Figure 1.2 blue 

line).  

The PK profile after oral administration can be described by Equation 1.4 

and is shown in Figure 1.2 as red line. 
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Figure 1.1: Schematic of a one-compartment PK model with first-order elimination for 

an i.v. bolus dose (A), and for oral administration with first-order absorption (B). 

Parameters: kel = elimination rate constant, V = apparent volume of distribution in the 

central compartment, ka = absorption rate constant, F = oral bioavailability. 
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Equation 1.3: One-compartment PK model for i.v. bolus administration with first-

order elimination. C(t) = plasma concentration over time, D = dose, V = apparent 

volume of distribution, kel = CL/V = elimination rate constant, CL = clearance. 
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Equation 1.4: One-compartment PK model for oral administration with first-order 

absorption and elimination. C(t) = plasma concentration over time, D = dose, F = 

bioavailability, V = apparent volume of distribution, kel = CL/V = elimination rate 

constant, CL = clearance. 
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Figure 1.2: Plasma concentrations for a one-compartment PK model with first-order 

elimination for an i.v. bolus dose (blue line) and for oral administration with first-order 

absorption (red line) with D = 10 units, CL = ln(2) hr-1, V = 1 L, F = 1 and ka = 1 hr-1. 

 

Two-compartment models (Figure 1.3) have an additional peripheral 

compartment into which the drug distributes at a different rate than in the 

plasma, resulting in a biexponential PK profile after i.v. bolus application 

(Equation 1.5, Equation 1.6, Figure 1.4). 

 

 

Figure 1.3: Schematic of a two-compartment PK model with first-order elimination for 

an i.v. bolus dose. Parameters: kel = elimination rate constant, k12, k21 = first-order 

transfer rate constant from the central to the peripheral compartment and vice versa. V1 

= apparent volume of distribution in the central compartment, V2 = apparent volume of 

distribution in the peripheral compartment. 
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Equation 1.5: Two-compartment PK model for i.v. bolus administration with first-

order elimination expressed as ordinary differential equations with initial conditions. 

A1 = amount in central compartment, A2 = amount in peripheral compartment. 
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Equation 1.6: Closed form solution of a two-compartment PK model for i.v. bolus 

administration with first-order elimination. 

 

 

 

Figure 1.4: Plasma concentrations for a two-compartment PK model with first-order 

elimination for an i.v. bolus dose D = 10 units, kel = 1 hr-1, V1 = 1 L, k12 = 0.5 hr-1, k21 

= 0.25 hr-1, and V2 = 5 L. 
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For multi-compartment models two different types of models need to be 

distinguished: mammillary models and catenary models. In a mammillary model 

all peripheral compartments are directly linked to the central compartment, but 

not interlinked. In a catenary model the compartments are linked in sequence 

(Figure 1.5). In mathematical terms, these models are usually expressed as 

series of ordinary differential equations equivalent to Equation 1.5. 

 

 

Figure 1.5: Schematic of a mammillary (A) and a catenary (B) three-compartment 

model with first-order elimination for an i.v. bolus dose. Parameters: kel = elimination 

rate constant, k12, k21, k13, k31, k23, k32, = first-order transfer rate constants between the 

compartments, V1 = apparent volume of distribution in the central compartment, V2 = 

apparent volume of distribution in the first peripheral compartment, V3 = apparent 

volume of distribution in the second peripheral compartment.  
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Mammillary models are prevailing in PK analysis, as it is commonly 

assumed that all tissue compartments are directly linked with the central 

plasma compartment rather than with each other. On the other hand, catenary 

compartment models are useful to describe transition processes, e.g. the 

successive formation of multiple metabolites [8] or a time delay in drug 

absorption after oral administration [9,10]. 

1.1.2.2. Pharmacodynamics 

In short: “Pharmacodynamics is what the drug does to the body” [7]. More 

appropriately, PD describes the relationship between drug concentrations and 

effect. 

1.1.2.2.1. Concentration – effect relationship 

After absorption into the systemic circulation and distribution to its site of 

action, a drug causes a physiological effect by binding to a receptor. Here, 

“effect” can stand for the desired clinical effect of the drug but also undesired 

adverse effects.  

In mathematical terms, PD describes the effect E of a drug as a function of 

its plasma concentration C and the PD parameters  PD
θ : 

    PD
θ,CfCE PD  

Equation 1.7: Basic equation for pharmacodynamic models. 

1.1.2.2.2. PD models  

The magnitude of a pharmacodynamic effect E depends on the 

concentration of the drug. However, the relationship between concentration 

and effect is generally non-linear, i.e. doubling the concentration does not 

result in a two fold increase in effect. Also, the effect asymptotes to a maximum 

effect (Emax) with increasing concentrations, resulting in a reduced increase in 

effect with the increase in concentration (“law of diminishing returns”). 
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Based on the receptor binding theory for drug action, a mathematical 

model was developed to describe the relationship between drug concentration 

and effect, which is the same as the Michaelis-Menten equation that is used to 

describe saturable enzyme kinetics. This basic PD model is commonly referred 

to as Emax model (Equation 1.8).  

 
CEC

CE
CE max






50

 

Equation 1.8: Emax model with Emax = maximum effect of the drug, C = drug 

concentration, and EC50 = drug concentration resulting in half-maximum effect. 

An extension to the basic Emax model is the so-called sigmoidal Emax model 

which introduces the Hill coefficient  to describe s-shaped asymptotic 

behaviour in the model: 

 









CEC

CE
CE max

50

 

Equation 1.9: Sigmoidal Emax model with  = Hill coefficient. 

Strictly speaking  should only be referred to as the “Hill coefficient” if it 

is an integer as it was mechanistically derived based on the theory of allosteric 

binding of multiple ligands to the same receptor [11]. However, in a modelling 

analysis it can be estimated as an empirical exponent that is allowed to take any 

positive value (Figure 1.6).  
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Figure 1.6: Concentration-effect relationship for an Emax model with Emax = 100%, EC50 

= 2.5 units/L, and different values for : black line  = 1, red line   = 0.25, and blue 

line  = 5. 

The Emax model can furthermore be extended to include a constant 

baseline effect E0 in the absence of the drug (Equation 1.10). If the baseline is 

changing over time, e.g. due to progress of the disease, E0 can be replaced by a 

time varying function in Equation 1.10, which is generally called a disease 

progression model. More details on disease progression models can be found 

in Chan and Holford, 2001 [12]. 

 
CEC

CE
ECE max






50
0  

Equation 1.10: Emax model with constant baseline effect E0. 
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1.1.2.3. Pharmacokinetics-Pharmacodynamics  

By combining PK and PD the time course, i.e. onset and duration, of a 

drug effect can be described.  

1.1.2.3.1. Time course of drug effect 

Mathematically, we can substitute Equation 1.2 in Equation 1.7 and 

obtain: 

       PDPK
θθ , ,, tdosefftE PKPD  

Equation 1.11: Basic equation for pharmacokinetic-pharmacodynamic models. 

From Equation 1.11 it can be seen that the drug effect E is now expressed 

as a function of time t depending on dose, the PK parameters  PK
θ , and the 

PD parameters  PD
θ , effectively describing the time course of the drug effect. 

1.1.2.3.2. PKPD models  

PKPD models are conventionally divided into two categories, depending 

on the nature of the link function fPD() that is used to combine PK and PD:  

 immediate effect PKPD models  

 delayed effect PKPD models  

An immediate effect PKPD model assumes no time delay between PK and 

PD. This means that the effect follows the same time course as the plasma 

concentration of the drug (Figure 1.7), e.g. the maximum effect is achieved at 

the same time as maximum plasma concentrations are observed.  
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Figure 1.7: Time course of drug effects for an immediate effect PKPD model. Black line: 

PD effect with Emax = 100%, EC50 = 2.5 units/L, and  = 1. Red line: PK profile for a 

one-compartment PK model with oral administration, first-order absorption and first-

order elimination where D = 10 units, CL = ln(2) hr-1, V = 1 L, F = 1 and ka = 1 hr-1. 

We can substitute the concentration C(t) in Equation 1.8 (alternatively 

Equation 1.9 or Equation 1.10) with the plasma concentration described by the 

PK model (Equation 1.2) to obtain: 

 
 
 tCEC

tCE
tE max






50

 

Equation 1.12: Immediate effect PKPD model. 

However, only very few drugs do not exhibit a time delay between PK 

and PD. More often, the PD effect of the drug does not follow the same time 

course as its PK, e.g. the time of the maximum effect does not correspond to the 

time of the highest plasma concentration as illustrated in Figure 1.8. This delay 

can be attributed to various factors, such as a delay in the distribution of the 

drug from plasma to the site of action, a slow binding of the drug to the 

receptors, or the drug can stimulate or inhibit physiological processes that have 

their own time course and which in turn cause the observed effect E.  
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Figure 1.8: Time course of drug effects for a delayed effect PKPD model. Black line: PD 

effect with Emax = 100%, EC50 = 2.5 units/L, and  = 1. Red line: PK profile for a one-

compartment PK model with oral administration, first-order absorption and first-order 

elimination where D = 10 units, CL = ln(2) hr-1, V = 1 L, F = 1 and ka = 1 hr-1. 

Two different types of delayed effect PKPD models have been developed: the 

effect compartment PKPD model and turnover PKPD models. 

The effect compartment model assumes the presence of an additional 

compartment in which the drug is assumed to exhibit its effect. The 

distribution into this hypothetical compartment results in the delay between 

the PK profile in the plasma (described by the central compartment) and the 

PD effect. Alternatively, the delayed distribution into the effect compartment 

can also be interpreted as slow binding to the receptor. This model assumes 

that only a marginal amount of drug distributes into the effect compartment so 

that its influence on the mass balance of the PK model is negligible. The volume 

of distribution of the effect compartment is unidentifiable. However, under the 

assumption that the steady state concentrations in the central compartment and 

in the effect compartment are equal, the equilibrium rate constant keq for the 

distribution out of the effect compartment can be estimated. Equation 1.13 

describes the rate of change of the concentration in the effect compartment Ce 
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and the PKPD model resulting from substituting Ce into Equation 1.8 

(alternatively Equation 1.9 or Equation 1.10): 

 

 
 
 tCEC

tCE
tE

CCk
dt

dC

e

emax

eeq
e








50

 

Equation 1.13: Effect compartment PKPD model with Ce = drug concentration in the 

hypothetical effect compartment, keq = equilibration rate constant. 

Note that the effect in Figure 1.7 was plotted based on Equation 1.13 using 

keq = 0.01 hr-1. 

Turnover models on the other hand assume that the drug directly affects 

physiological processes such as the production or elimination of an 

intermediate I and the changes in these processes result in the delayed effect. 

As the drug can either stimulate or inhibit these processes four turnover PKPD 

models exist (Equation 1.14) [13]: 

 
 
 
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Equation 1.14: Turnover PKPD models with I = intermediate, Rin = production rate of 

I, kout = elimination rate constant. (A) inhibition of production, (B) stimulation of 

production, (C) inhibition of elimination, (D) stimulation of elimination. 

While the idea of an effect compartment is to some extent adopted in the 

third part of this thesis, turnover PKPD models are not applied in this work 

and hence are not elaborated on further. Excellent review articles on PD models 

as well as PKPD models have been published and provide more details [14-17]. 
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1.1.3. Survival analysis 

Survival analysis (also known as time-to-event analysis) quantifies the 

time until a certain event occurs [18]. It is similar to a PK data analysis in the 

sense that the independent variable is time. However, while the dependent 

variable in a PK analysis (plasma concentration) is continuous, survival 

analysis is concerned with binary data as dependent variable: either event (1) 

or no event (0).  

Five mathematically equivalent functions are used to describe the survival 

time. These functions and their relationships are introduced briefly in the 

following section and a simple example is given in Section 1.1.3.2. 

1.1.3.1. Functions of survival time 

1.1.3.1.1. Survival function 

The survival function S(t) defines the probability P of the survival time T 

of an individual being longer than time t. 

     









t

t
tStTPtS

for    0

 0for    1
   with  

Equation 1.15: Survival function. 

1.1.3.1.2. Cumulative distribution function 

Similarly, the cumulative distribution function (cdf) F(t) describes the 

inverse probability for T being less than t: 

     

   tStF

t

t
tFtTPtF












1

for    1

 0for    0
   with 

 

Equation 1.16: Cumulative distribution function. 
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1.1.3.1.3. Probability density function 

The probability density function (pdf) f(t) describes the random 

distribution of the survival time T and is given as the derivative of the cdf with 

respect to time t: 

 
dt

dF
tf   

Equation 1.17: Probability density function. 

Note, that with respect to survival analysis f(t) specifically denotes a pdf, 

whereas in this thesis f(t) is also used to indicate a structural model. 

1.1.3.1.4. Hazard function 

The instantaneous risk of an event occurring at time t is described by the 

hazard function h(t), which can be derived as the ratio of pdf and survival 

function: 

 
 
 tS

tf
th   

Equation 1.18: Hazard function. 

1.1.3.1.5. Cumulative hazard function 

The cumulative hazard function H(t) describes the cumulative risk of an 

event occurring at time T and is given as the integral of h(t) over time. It can 

also be described as the negative natural logarithm of the survival function S(t). 

     tSdtthtH

T

ln

0

   

Equation 1.19: Cumulative hazard function. 
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1.1.3.2. Example 

This example illustrates the different functions of survival time for a 

constant hazard model (Equation 1.20), where the instantaneous risk of an 

event occurring, i.e. h(t), does not change over time (Figure 1.9).  

  th     hazard function 

  ttH      cumulative hazard  

   ttf   exp   pdf 

   ttF  exp1   cdf 

   ttS  exp    survival function 

Equation 1.20: Functions of survival time for a constant hazard model. 

It can be seen from these equations that a survival analysis based on a 

constant hazard model is equivalent to a PK analysis using a one-compartment 

model with i.v. bolus dosing as the survival function in Equation 1.20 equals to 

Equation 1.3 with a unit dose and a volume of distribution V of 1. The hazard 

rate constant  is therefore equivalent to the elimination rate constant kel in a 

PK analysis, which means that kel can also be interpreted as the instantaneous 

risk of a single drug molecule to be removed from the circulation. 
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Figure 1.9: Functions of survival time for a constant hazard model with  = 0.1 per 

unit of time. 
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1.1.4. Population analysis  

Clinical data commonly arises from more than one individual while 

multiple samples are often taken from each individual, and variability not only 

between the different people but also within the data from the same individual 

is observed. With respect to the opening quote of this thesis by Sir William 

Osler (page 3), understanding this variability is paramount to replacing the 

“art” in medicine with science.  

A population analysis can be used to achieve this goal. Two types of 

population analysis will be introduced here that can quantify the variability in 

the data: the two-stage approach and the full population approach. For comparison, 

the naïve pooled approach for data analysis will also be considered, although this 

approach does not allow for the quantification of variability in the data. More 

information on population analysis methods can be found in [19-22]. 

1.1.4.1. Naïve pooled approach 

Using the naïve pooled approach, the data is analysed as if it had arisen 

from just a single individual (or as if each observation was obtained from a 

different individual). The whole data set is pooled together and just one set of 

parameter values is estimated for the corresponding model. In terms of 

computational effort, this method is the least complex approach. Equation 1.21 

describes the use of ordinary least squares (OLS) to calculate the objective 

function value (OFV) for the naïve pooled approach: 

     
 















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n

j

ijijOLS

i

xfyOFV

1 1

2
,θθ  

Equation 1.21: Naïve pooled approach using ordinary least squares (OLS) to calculate 

the objective function value (OFV). 

Here, θ  denotes the np-by-1 parameter vector of the structural model f() 

as in Equation 1.1, i denotes the ith individual, N is the total number of 

individuals such that i = (1,… N), yij denotes the jth observation in the ith 

individual with ni being the total number of observations for this individual, 
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and xij is the jth independent variable for the ith individual. Note, that this 

notation will be used throughout this thesis. 

The naïve pooled analysis aims to find the set of parameters θ̂  that 

minimise Equation 1.21, i.e. that provides the best fit of function f to the data. 

No between subject variability (BSV) can be estimated from this approach. This 

results in biased parameter estimates as well as an inflated residual 

unexplained variability (RUV) [19]. It also needs to be noted that using OLS as 

objective function for a naïve pooled analysis also does not allow estimating the 

RUV variance parameters. Due to these drawbacks the naïve pooled approach 

is commonly only used to obtain initial parameter estimates for a more 

complex population method. 

1.1.4.2. Two-stage approach 

In a two-stage approach, the data for each individual are analysed 

separately, e.g. using OLS as objective function, resulting in N sets of individual 

parameter estimates iθ̂ (np-by-1 vector). The expectation of the population 

mean value for the pth parameter pθ  can then be calculated as either the 

arithmetic or geometric mean of these parameter sets, while the BSV of the pth 

parameter denoted by p can be quantified as the variance of the individual 

estimates of the pth parameter: 

    
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Equation 1.22: Two-stage approach using ordinary least squares as objective function. 
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The two-stage approach is a relatively simple method to obtain an 

estimate of the BSV in addition to the population mean parameters. However, 

this approach requires rich data for each individual and the obtained BSV tend 

to be inflated compared to the true variability in the parameters between the 

individuals as it does not take into account the uncertainty in the individual 

parameter estimates. 

1.1.4.3. Full population approach 

A full population approach provides the most accurate and precise 

quantification of the population mean parameter estimates as well as RUV and 

BSV for a given data set. In addition, this approach is able to handle sparse 

data. However it is also the most complex analysis method of these three 

approaches. 

A hierarchical model structure is assumed for a full population approach. 

The first level in the model hierarchy describes the structural model on an 

individual level together with the statistical model for RUV. Equation 1.23 

gives an example where the RUV is described by an additive error  which is 

assumed to be normally distributed with variance 2.  

  ijiijij xfy  θ̂,  

with  2,0~ Nε  

Equation 1.23: Structural model for the ith individual in a full population approach. yij 

= jth observations, xij = jth independent variable, iθ̂ = vector of individual parameter 

estimates for the ith individual, and 2 = variance of the additive error . 

The second hierarchical level describes the model for the BSV in the 

individual parameter estimates (Equation 1.24). 
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ipepip
η

θ
ˆ

θ̂   

Equation 1.24: Between subject variability of the individual estimate of the pth 

parameter for the ith individual ipθ̂  in a full population approach, where pθ
ˆ  denotes the 

population mean parameter estimate and ipη  denotes the random effect for the ith 

individual.  

It is assumed that the BSV terms p are normally distributed with variance 

2
pp , where  is the variance-covariance matrix for all elements of  according 

to: 
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Equation 1.25: Variance-covariance matrix for the between subject variability. 

In contrast to a two-stage analysis, where the expectation of the 

population mean parameter values θ  are calculated post hoc as the mean or 

median of the individual parameter estimates iθ̂ , a full population approach 

allows estimating the population mean parameter values from the data. 

Throughout this thesis these population mean estimates will be denoted as θˆ

(np-by-1 vector). 

Using an exponential model to describe BSV as shown in Equation 1.24 is 

of convenience in a PKPD analysis as it results in a lognormal distribution of 

iθ̂ that restricts all parameter estimates to be greater than zero. Given that 

physiological parameters have a natural lower boundary of zero, this is more 

plausible than a normal distribution, which would allow for negative 

parameter estimates as well.  
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1.1.4.3.1. Non-linear mixed effect modelling 

The hierarchical structure of a population analysis model requires the 

estimation of two types of effects: fixed effects given by the structural parameters 

θ , and random effects describing the remaining unexplained differences seen in 

the data set via the variance terms  and 2. These types of models are also 

known as non-linear mixed effect models (NLME models). Here, non-linear refers 

to the non-linearity of the model in the random effect parameters.  

Due to the additional complexity of these models, parameter estimation 

using OLS is no longer feasible. Instead, a likelihood based approach is 

required to allow for the estimation of θ ,  and 2. The likelihood L is 

expressed as the probability P of the data Y arising under the structural model f 

given the parameters θ ,  and 2. Maximum likelihood estimation then aims 

to find those parameter values that maximise L. 

 2,,| ΩθYPL 

 
Equation 1.26: Likelihood for a NMLE model. 

The most commonly used software package for NMLE modelling used for 

population PKPD analyses is NONMEM, originally developed by Lewis 

Sheiner and Stuart Beal [19,23]. More recently, MONOLIX was introduced as 

an alternative NMLE modelling software [24]. An overview of the common 

estimation methods used to maximise Equation 1.26 with both programs is 

given next. Note, that more NMLE modelling programs are available and are 

used in the area of population PKPD. However, here focus is given only on 

those programs and algorithms that are utilised in this thesis. 
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1.1.4.3.2. Estimation methods in NONMEM 

No analytical solution is available for NMLE models that allows 

estimating θ ,  and 2 simultaneously using a likelihood based approach. 

Instead, when using the most common estimation methods FO (first-order) and 

FOCE (first-order conditional estimation), NONMEM minimizes -2x log 

likelihood (-2LL) as objective function based on a numerical solution where 

 iijxf ηθ,,  is linearised using a first-order Taylor series expansion around . 

Under the assumption of a normally distributed residual error -2LL is 

equivalent to the extended least squares (ELS) given by Equation 1.27 [25]: 

       









 
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iiiiiiELS ffOFV

1

T1
  log,, VθXYVθXY

 

Equation 1.27: Objective function used in NONMEM [19]. 

Here, || denotes the determinant, while Vi denotes the population 

covariance matrix of the data in the ith individual which depends on Xi, θ ,  

and 2. Under the assumption of a single residual error variance 2, Vi is 

approximated as: 

ini IJJΩV
2T   

Equation 1.28: Linear approximation of the population covariance matrix [19]. 

where J is the Jacobian matrix of the first partial derivatives of f with 

respect to the random effects ,  and 
inI  is an ni-by-ni identity matrix. 

This expansion is evaluated for all ipη = 0 in the FO method or at a 

conditional estimate for all ipη denoted ipη̂  in the FOCE method, and estimates 

for θ  and 2 are obtained at each iteration. Subsequently, i are estimated from 

the empirical Bayes estimates (EBEs) after each iteration conditioned on the 

current estimates of the population parameters θ . EBEs are the individual 

parameter estimates iθ̂  obtained by using θ  as prior information. It needs to 

be noted that the FO method performs well only for models that are close to 
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linear, and FOCE is therefore the method of choice for NLME analysis in 

NONMEM. In addition, the interaction option should be used in the presence 

of a heteroscedastic error model, so that the algorithm accounts for the 

relationship between  and  when calculating 2.  

Besides these long-standing and commonly used estimation methods, 

recent versions of NONMEM include a range of alternative estimation 

methods such as the Laplacian method (which uses a second-order Taylor 

series approximation) or various stochastic methods. More detail on the FO and 

FOCE estimation as well as the alternative methods can be found in [1,23]. 

1.1.4.3.3. SAEM algorithm in MONOLIX 

With the FO and FOCE method in NONMEM an exact solution for the 

linear approximation of the likelihood is obtained. In contrast to that, the 

SAEM (stochastic approximation expectation maximisation) algorithm is a 

stochastic method which provides an approximate solution to the exact 

likelihood. The MATLAB based implementation of the SAEM algorithm used 

in MONOLIX 1.1 [24] was used in Chapter 4 of this thesis as the model used 

in this chapter was also implemented in MATLAB. Nonetheless, this 

algorithm is now also available in NONMEM (version 7.1. and above). 

The SAEM algorithm is an extension of the EM algorithm that is used for 

linear mixed effect models. For each iteration k the EM algorithm first 

computes the conditional expectation of the log likelihood Q (E-step) which is 

then maximised with respect to all estimated parameters  2,, Ωθ  (M-

step): 
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Equation 1.29: EM algorithm for linear mixed effect models. 
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For NLME models, Q cannot be computed directly. However, the E-step 

in the EM algorithm can be replaced by a stochastic approximation for these 

models, resulting in the SAEM algorithm:  

         }1{}{}{}1{}{ ;,log   kkkkk QPQQ XY
 

Equation 1.30: Stochastic approximation of the EM algorithm for NMLE models.  

where }{k
X is randomly drawn from the conditional distribution 

 }{, kP Y  and the step size }{k  is decreasing with each iteration in a 

predefined manner. For NMLE models, a Markov Chain Monte Carlo (MCMC) 

procedure is used to obtain the simulations for }{k
X required in the expectation 

step of each iteration. Using the SAEM algorithm in MONOLIX, the E- and M-

steps are repeated for a user-defined number of iterations, usually ≥500. 

Convergence is assessed in this implementation of the algorithm by the user 

based on automatically generated graphical output where the trajectory of }{k  

is plotted against k.  

More information on the SAEM algorithm and MONOLIX can be found 

in [24,26,27]. 

1.1.5. Optimal design  

Within the setting of design of experiments, optimal design theory aims to 

optimise a study design to gain maximum information from a given design 

within a set of design constraints. The type of information sought depends on 

the question asked. For example, the aim of discriminating between competing 

models requires different information than the aim of parameter estimation for 

a given model. Different statistical criteria have been developed to optimise for 

different questions. In this thesis, optimal design theory will be applied for 

parameter estimation and the D-optimality criterion will be introduced here. 

More detailed information on optimal design can be found in Foo and Duffull 

[28] and Atkinson and Donev [29]. 
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1.1.5.1. Theory 

For clinical studies the design variables to be optimised are most often the 

number and timing of blood samples with the aim of gaining as much 

information as possible on the underlying parameters in the model. A sample 

taken at a time point where the response is most sensitive to change in a 

particular parameter value provides the most information about that parameter 

value and thus is optimal for estimating the parameter. 

The sensitivities of a function f with respect to changes in the parameters  

can be expressed as the partial derivatives of the function with respect to the 

parameters. This can be expressed as a sensitivity matrix of partial derivatives 

over all model parameters  T1 θ ,θ
pnθ  at all time points  ntt  ,1 t  which 

is denoted as the Jacobian J (dimension np-by-n): 
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Equation 1.31: Jacobian matrix. 

The Fisher Information matrix (MF) can then be calculated according to: 

T1
JJΣMF

  

Equation 1.32: Fisher Information matrix. 

Here, nσ IΣ
2 , where 2σ is the variance of the residual error assuming 

an additive error model and nI is an n-by-n identity matrix, yielding a diagonal 

error matrix . Note, that the parameter vector θ  can informally be assessed to 

be locally identifiable when MF is positive definite for a given design.  

The lower bound of the standard error of the parameter vector θ  is given 

by the square root of the diagonal entries of the inverse of MF. Therefore, 

maximizing MF is equivalent to minimising the standard error of the parameter 

estimates. 
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1.1.5.1.1. Local D-optimality criterion 

It is common to summarise the MF by taking its determinant |MF| 

yielding the local D-optimality criterion 
D . The local D-optimal design D  

is gained by maximising Equation 1.33 over the design space T, where T  IR+. 

    ,    tθMF
Tt

  argmaxD  

Equation 1.33: Local D-optimality criterion. 

As the MF is a function of the parameters θ , the local D-optimal design 

depends on the parameter values as well, thus these would need to be known a 

priori which is usually not the case.  

1.1.5.1.2. Robust D-optimality criteria 

Uncertainty in the parameter values can be incorporated by assuming a 

distribution of parameter uncertainty and applying a robust D-optimality 

criterion. Various robust criteria have been developed, such as ED (expectation 

of the determinant), DE (determinant of the expectation) MMD (maximin D-

optimal design) and AIP (approximation to the preposterior information, 

equivalent to the negative log of the expectation of the determinant) [30-32]. In 

this thesis, a hypercube log D-optimal design (HClnD) will be applied as robust 

optimality criterion [33], and the introduction here will focus on this criterion 

only.  

In contrast to other robust criteria, HClnD does not require the 

distribution of the uncertainty in the parameter values to be specified a priori 

but rather a lower and upper point estimate. pn
2  parameter sets are formed 

representing all possible combinations of the 2.5th and 97.5th percentiles of the 

prior parameter distribution. The logarithm of the determinant of the MF is 

then calculated for each of the parameter sets  k
θ and the design is optimized 

based on their summation according to: 
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Equation 1.34: HClnD optimal design criterion.  

In this work, the weighting of each model () is fixed to 1 and the number 

of parameters that are to be estimated np is the same for all models. 

1.1.5.1.3. D-efficiency 

The D-efficiency Eff of any given design 
D  in comparison to the D-

optimal design D is then calculated according to 
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Equation 1.35: D-Efficiency. 

The efficiency is related to the experimental effort, whereby a value of, for 

example, 50% indicates that the design in the numerator is half as efficient as 

the design in the denominator and doubling the experimental effort of the 

former would yield equivalently informative designs.  
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1.2. Red blood cells  

RBCs, or erythrocytes, are the main cellular component of human blood 

and a very unique type of cell. Their main function is to transport oxygen (O2) 

from the lungs to the body tissues and carbon dioxide (CO2) back from the 

tissues to the lungs. Because of this specialised function, RBCs are almost 

entirely filled with haemoglobin (Hb), the protein that binds O2 and CO2 and 

that gives blood its red colour [34].  

1.2.1. RBC production 

RBCs are produced in the stroma of the bone marrow, a process known as 

erythropoiesis, where pluripotent haematopoietic stem cells differentiate over 

several precursor cell types into reticulocytes [34]. This differentiation is 

mediated by the hormone erythropoietin (EPO), which is produced in the 

kidneys in response to reduced O2 content in the blood. Thus, a feedback loop 

between RBC production in the bone marrow, O2 content in the blood (an 

indicator for the number of RBCs in the circulation) and EPO production in the 

kidneys exists. 

 

Figure 1.10: Erythropoietic feedback circle. 
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During the differentiation process in the bone marrow, the cell’s nucleus 

degenerates and is extruded, sacrificing the ability of the cell to synthesise 

proteins, perform self-renewal and mitosis for a greater Hb carrying capacity. 

The resulting reticulocytes migrate into the circulation and subsequently 

differentiate into mature RBCs within one to two days by degeneration and 

loss of the remaining organelles [34].  

1.2.2. RBC lifespan & destruction 

Without the ability of self-renewal and mitosis, mature RBCs are 

committed to die after a certain period of time. This period of time is 

commonly referred to as the lifespan of RBCs and is generally accepted to be 

approximately 120 days, although this value lacks clear scientific evidence. 

Lifespan values reported in the literature differ depending on the method used 

to determine the lifespan, and mean lifespan values between 100 and 125 days 

have been reported [34-36]. 

1.2.2.1. Lifespan concept & destruction mechanisms 

Four general processes are involved in the physiological destruction of 

RBCs: 

 Senescence (death from old age) 

 Mid-life destruction of misshapen RBCs 

 Random destruction and loss during the circulation 

 Early death of unviable RBCs and due to neocytolysis 

It has been suggested, that the potential lifespan of a RBC is an innate 

characteristic of the cell itself. It is assumed to resemble the ability of the cell to 

resist the stress the cells are exposed to during the circulation in the body, e.g. 

shear forces in the capillaries [37]. Mature RBCs are not able to repair any 

structural damage or metabolic failures by de novo synthesis of proteins or 

lipids [34]. Therefore, their ability to resist destructive processes is limited and 

eventually determines the cell’s lifespan [37]. This limited ability decreases 

gradually during the lifetime of the cell, finally resulting in death of the cell 
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due to old age which is termed senescence. Furthermore, misshapen RBCs have 

an inherent reduced ability of resistance and, therefore, are removed from the 

circulation earlier than normal RBCs.  

RBCs are also subject to age-independent random destruction, at least to a 

small fraction in healthy humans and to a greater extent in certain types of 

anaemia [38]. Furthermore, erythrokinetic studies have shown that 

erythropoiesis is partly ineffective resulting in unviable RBCs [39], which either 

never reach circulation or are destroyed shortly after their release [40]. 

Additionally, selective reticuloendothelial sequestration of the youngest RBCs 

termed neocytolysis has been described [41]. Neocytolysis is a fast and fine 

tuned mechanism to control the number of circulating RBCs [41], and is part of 

the pathophysiology of the anaemia of chronic kidney disease (CKD) [42].  

1.2.2.1.1. Effect of pathological conditions on RBC lifespan and destruction 

The influence of pathological conditions on the RBC lifespan and 

destruction mechanisms is not fully understood. In CKD for example, RBC 

survival is decreased in addition to the diminished RBC production that results 

from a decreased production of EPO by the kidneys [43,44]. However, it is 

unclear whether this decreased survival is due to an accelerated senescence, i.e. 

the cells have a generally decreased survival capacity, or whether the uremic 

environment results in an increased destruction of the cells irrespective of their 

age. Deeper insight into the underlying mechanisms of RBC destruction would 

be desirable to obtain a better understanding of the anaemia of CKD, but also 

other diseases affecting RBC survival. 

1.2.2.2. Destruction sites & stimuli 

Damaged and senescent RBCs are removed by the reticuloendothelial 

system (RES), predominantly by the spleen, but also by the liver [34,45].  

RBCs are sequestered within the vascular spaces of the RES, where they 

are haemolysed after phagocytosis by macrophages. Various factors are 

involved in triggering the removal of RBCs in the RES, most of which are 

related to the ability of the cell to deform normally or the cell’s membrane 
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characteristics. Cell deformation is crucial for the RBCs to pass through the 

small gaps in the filtration beds in the RES, while altered membrane 

characteristics can trigger phagocytosis by macrophages. The following 

characteristics have been reported to trigger RBC destruction:  

 decreased activity of glycolytic enzymes with subsequent metabolic 

failure [46]  

 increased intracellular calcium concentrations leading to a higher cell 

density and decreased deformability [47] 

 oxidative injury and polymerisation of cytoskeletal proteins resulting 

in increased cell stiffness [34]  

 changes in the cell membrane affecting deformability and surface 

charge [34,45] 

 increased binding of autologous antibodies to antigens in the RBC 

membrane [34] 

In addition, changes in EPO concentrations not only mediate RBC 

production but also influences RBC destruction in the RES. Neocytolysis was 

shown to be induced by rapidly decreasing EPO concentrations which result in 

wider gaps in the filtration beds of the RES and also in direct changes on the 

RBC membrane [48-50]. These mechanisms allow for a faster decrease in RBC 

numbers when shifting to lower altitude than would be possible by removal of 

old and damaged RBCs alone [41]. Neocytolysis may also result from rapid and 

large fluctuations in EPO concentrations which can occur with i.v. EPO therapy 

[42,51]. 

1.2.3. Methods to determine RBC survival 

To estimate the lifespan of RBCs it is generally considered necessary to 

follow the cells over their entire life. This is usually achieved by using a label. 

Two different types of labelling methods have been established: cohort labelling 

and random labelling methods [34,52].  
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1.2.3.1. Existing RBC labelling methods 

An overview of existing labelling methods for RBCs is given in Table 1.1. 

Using cohort labelling methods newly formed RBCs are labelled as a group, 

while random labelling involves labelling RBCs of all ages that are present at 

one point in time. 

Table 1.1: Labelling methods for RBCs. 

Label Mechanism 

Cohort labelling methods 

Radioactive iron (59Fe) Incorporation into the heme group during the 
production of haemoglobin [35,53] 

Glycine tagged with 
isotopes (15N or 14C) 

Incorporation into the protoporphyrin part of 
the heme group [35,38,54] 

Random labelling methods 

Differential agglutination 
method  

Transfusion of donor RBCs into a recipient 
with a different blood group but without the 
ability of producing antibodies against the 
blood group of the donor [55] 

Radioactive chromium 
(51Cr) 

Complexation with haemoglobin [56-58] 

Radioactive diisopropyl-
fluorophosphate (DF32P) 

Binding to intracellular cholinesterases [59-61] 

Biotin Covalent binding to membrane proteins [36] 

 

Unfortunately, all labelling methods have significant limitations. In the 

case of cohort labelling methods the label is usually incorporated into Hb 

during RBC production over several days. Therefore, the labelled cells do not 

have exactly the same age. Other problems associated with both types of 

labelling techniques include the reuse of a label released after the breakdown of 

a cell and random loss of label from the cells during their circulation in the 

body. For an accurate estimation of the RBC lifespan it would be necessary to 

account for all of those problems occurring with the label used.  
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Of the methods mentioned in Table 1.1, the biotin technique would be 

expected to provide the most accurate estimation of the RBC lifespan. Biotin is 

permanently bound to the RBC membrane in a covalent manner and RBCs 

carrying the biotin label can be detected with high sensitivity using flow-

cytometry. However, this method is not widely used for clinical purposes due 

to the expensive equipment required and the complex procedure. Therefore, 

only limited information on this method exists in comparison to the more 

commonly applied techniques, especially the radioactive chromium (51Cr) 

method. 

1.2.3.2. Other methods 

An alternative method that has been used to determine RBC survival and 

that does not rely on the concept of labelling is the CO exhalation method [62-

65]. This method measures the CO content in the exhaled breath and therefore 

quantifies heme turnover as one molecule of CO is produced per molecule of 

destroyed heme. The measured CO content is then converted mathematically 

into a RBC lifespan value where the contribution of the breakdown of other 

heme containing enzymes and proteins such as myoglobin is accounted for 

empirically. 

While CO exhalation avoids reuse and label loss, it is confounded by 

environmental issues and only gives an indirect measure of RBC turnover at a 

certain time point. This method does not follow RBCs longitudinally and 

therefore does not provide any information on the RBC lifespan distribution. 

Additionally, the equations used to derive an RBC lifespan value from the CO 

content in the breath are potentially confounded. The fraction of CO attributed 

to RBC breakdown in these equations is usually determined based on the 

assumption of an average RBC lifespan of 120 days, and not all alternative 

physiological mechanisms that result in CO production other than RBC 

breakdown are accounted for in most of these equations. 
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1.2.3.3. Reference method to determine RBC survival 

The International Committee for Standardization in Hematology (ICSH) 

recommends random labelling with 51Cr to determine RBC survival [66]. This 

method is therefore most often used in clinical practice. 

Although 51Cr is firmly bound to intracellular Hb in vitro [56,57], a 

permanent loss of label is observed in vivo [57,67]. This loss seems to be partly 

due to the dissociation of the chromium-haemoglobin complex. Previous 

authors refer to this loss as “elution” [57,67], and correcting factors were 

established to account for it [66]. However, the extent of elution varies 

depending on the labelling method and is additionally increased in haemolytic 

disorders [67]. Furthermore, it was shown more recently that Hb is lost from 

RBCs due to vesiculation [68]. This process further increases the amount of lost 

label. Yet, the loss of label due to vesiculation of Hb has not been considered in 

previous calculations of the RBC lifespan based on 51Cr labelling experiments 

which casts doubt on the accuracy of the RBC lifespan values determined in 

this way. 

1.2.4. Previously proposed lifespan models 

Mathematical models have been used to describe RBC survival since the 

first labelling methods for RBCs were established in the 1940s and 1950s. Most 

of these models assumed the lifespan to be uniform and finite for all RBCs in an 

individual (i.e. a point distribution); however random destruction and simple 

lifespan distributions, such as normal or lognormal distributions, were 

considered as well [38,54,69]. An extensive review of the early work can be 

found in Berlin et al. [35]. 

Here, focus will be given to models developed more recently in the area of 

pharmacometrics. 
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1.2.4.1. Lifespan based indirect response models 

Over the past 20 years, lifespan based indirect response (LIDR) models 

have been developed and used to describe various haematopoietic cell lines, 

including erythropoiesis in rats [70]. A recent review by Krzyzanski and Perez 

Ruixo excellently describes the fundamentals, applications and limitations of 

LIDR models [71]. 

LIDR models are extensions of simple turnover models (Figure 1.11, 

Equation 1.36) where the cell loss rate Rout(t) is described as a function of time 

dependent on the lifespan distribution, denoted by the pdf, f(t,z), of the cells 

(Equation 1.37). The general notation used in Equation 1.37 allows the pdf to be 

time variant, i.e. cohorts of cells produced on different days are allowed to have 

different lifespan distributions. 

 

Figure 1.11: Schematic of a cell turnover model. Rin(t) = cell production rate, Rout(t) = 

cell loss rate, N = total number of cells in the system.  

 

   tRtR
dt

dN
outin   

Equation 1.36: Mass balance equation for a cell turnover model. 
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Equation 1.37: Time-dependent cell loss rate Rout as a function of the lifespan 

distribution of the cells denote by the corresponding pdf f(t,z). 

 

Equation 1.37 is equivalent to the convolution Rin*f(t) and can be 

substituted in Equation 1.36, which then becomes a delayed differential 

equation. 

Rout(t) Rin(t) 

 
N 
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Basic LIDR models use a point density as the pdf where all cells have the 

same lifespan. These distributions are either assumed to be time invariant in 

models where only a change in cell production is of interest [72], or time 

variant where the location of the point density is allowed to shift over time, e.g. 

due to the influence of agents that affect the elimination of the cells [73,74]. 

However, the main simplifying assumption that cells produced on the same 

day will all have the same lifespan holds true even for time varying basic LIDR 

models.  

Despite being more realistic, continuous pdfs have only been used 

sporadically as lifespan distributions in LIDR models [75,76], mainly because 

solving the corresponding delayed differential equation is very difficult.  

It should be noted that all LIDR models proposed so far assume cell 

destruction to occur due to one mechanism only, namely senescence. Only the 

use of a complex pdf would allow for different destruction mechanisms in a 

LIDR model. 

1.2.4.2. Transit compartment models 

Transit compartment (TC) models describe the survival of a cell 

population based on a series of catenary compartments (Figure 1.12) where cell 

death is assumed to occur only by senescence and is equivalent to the removal 

of the cells from the last compartment.  

 

Figure 1.12: Schematic of a transit compartment model. NC = number of 

compartments, kTR = transfer rate constant, kin = production rate constant. 

TC models can be regarded as a special case of LIDR models, where the 

underlying pdf is described by a gamma function [77]. However, they are 

easier to solve mathematically as they do not require delayed differential 

equations; and a closed form solution is available [9,10]. Note, that if the 

kin kTR kTR kTR kTR 
2 1 NC … 
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number of compartments approaches infinity the TC model becomes 

equivalent to the LIDR model as the gamma function will approach a point 

distribution. 

TC models with different numbers of compartments have been used to 

describe the survival for RBCs in literature [78-80]. Of particular interest is the 

work of Kalicki et al. who extended the basic TC model for RBC survival by 

including random destruction as a first-order loss process from all 29 

compartments in their model [80]. This was the first attempt to include two 

different types of RBC destruction into one of the recent models for RBC 

survival. 

1.2.4.3. A proposed RBC lifespan model 

In contrast to the more parsimonious objectives of the models described 

before, I have previously developed a model for RBC survival based on 

physiological destruction mechanisms of RBCs in a bottom-up model building 

approach [81,82].  

Development of this model was based on the theory of aging and 

longevity and survival analysis methods were applied to propose a pdf that 

accounts for four plausible destruction mechanisms of RBCs in the human 

body: 

 early removal of unviable RBCs from the circulation 

 age-independent random destruction 

 premature removal of misshapen RBCs 

 normal cell death due to senescence 

1.2.4.3.1. Proposed RBC lifespan distribution 

For this purpose, a bathtub-shaped hazard function was used as this type 

of function generally includes three components: 1) an instantaneous elevated 

risk of system failure followed by rapidly decreasing risk rate in the earliest 

phase of existence (analogous to infant mortality), 2) a constant hazard rate that 

spans the whole existence and that describes random loss (analogous to 
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random death) and 3) a final phase of increased system failure due to 

senescence of the system (analogous to an age-dependent increasing mortality 

rate). This results in a typically u-shaped hazard curve, thus the name bathtub 

function. 

Bebbington et al. proposed a pdf for human mortality showing a bathtub-

shaped hazard curve for the population of Indonesia [83]. They combined a 

modified flexible Weibull (FW) distribution, denoted by the parameters s1 > 0, 

s2 > 0 and c  0, and a reduced additive Weibull (RAW) distribution, denoted 

by the parameters r1 > 0 and r2 > 1. The resulting pdf for lifetime t > 0 

(equivalent with age at time of death) is denoted by the following equation: 

       tfmtfmtf RAWFWMIX  1,θ  
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Equation 1.38: Probability density function of the proposed RBC lifespan model. 

Here, the proportional contribution of each distribution is determined by 

the unit-less mixing parameter m (0  m  1). The mean parameter values for the 

Indonesian population were estimated as r1 = 0.0260 days-1, r2 = 5.7936, s1 = 

0.0434 days-1, s2 = 234.94 days, c = 0.0029 days-1 and m = 0.7843 [83].  

The underlying modified flexible Weibull distribution can be regarded as 

the pdf of the healthy subpopulation, shown in Figure 1.13A.  
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Figure 1.13: A Probability density function fFW(t) of the flexible Weibull distribution 

accounting for death due to senescence and random loss in the healthy population.  

B Probability density function fRAW(t) of the reduced additive Weibull distribution 

showing early infant mortality and reduced life expectancy of individuals with 

congenital disorders. 
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Here, death occurs either due to senescence (component 3) or age-

independently in a random fashion (component 2), e.g. fatal accidents or highly 

virulent infections that kill irrespective of age. Initially, the curve is elevated 

from the x-axis by the influence of the constant hazard rate c, while the 

maximum at the age of 70 years accounts for death due to senescence. On the 

other hand component 1, infant mortality together with a reduced life 

expectancy is described by the reduced additive Weibull distribution (Figure 

1.13B). Infant mortality is rapidly decreasing during the first five years and the 

mortality rate reaches a minimum at the age of 15 years. The saddle at the age 

of approximately 37 years is thought to account for a reduced life expectancy of 

those in the population who have congenital disorders that were not associated 

with immediate mortality (e.g. cystic fibrosis).  

Combining these two distributions according to the mixing parameter m = 

0.7843 (from the Indonesian population) results in the overall lifespan 

distribution for the Indonesian population (Figure 1.14A, Equation 1.38). The 

main maximum at the age of 70 years equates the maximum of the modified 

flexible Weibull distribution, while the saddle at the age of approximately 37 

years equates the maximum of the reduced additive Weibull distribution. This 

results in the saddle between the age of 35 and 50 years of the corresponding 

bathtub-shaped hazard function (Figure 1.14B), which represents the 

instantaneous risk of death at any point in time.  
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Figure 1.14: Combined model for the Indonesian population: A Probability density 

function fMIX(t). B Corresponding bathtub-shaped hazard curve hMIX(t). 
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The Indonesian model was chosen as a template for the lifespans of RBCs 

due to characteristics that compare to a potential bathtub-shaped hazard 

function for RBC survival. The characteristics of the Indonesian model are 

mapped to the postulated features for the RBC model in Table 1.2. 

Table 1.2: Indonesian model versus RBC model. 

Indonesian model RBC model 

Early infant mortality 
 

Early death of unviable RBCs or 
neocytolysis 

Constant hazard rate during the 
main lifetime 

Random destruction of RBCs during 
their circulation in the body 

Reduced life expectancy of 
individuals with congenital 
disorders 

Reduced lifespan of misshapen RBCs 
 
 

Exponentially increasing hazard 
rate with increasing age 

Removal of normal RBCs from 
circulation due to senescence 

 

1.2.4.3.2. Implementation of the model in MATLAB 

The model was implemented in the programming software MATLAB 

(The MathWorks Inc., Natick, USA). The overarching premise was to assign 

each simulated RBCs an individual lifespan, randomly sampled from the 

lifespan distribution described by the proposed pdf.  

Several difficulties arose from this idea:  

1) The complex structure of the pdf does not allow direct sampling of 

lifespans from the corresponding cdf as the inverse of the cdf is not available in 

closed form. To circumvent this problem, a rejection sampling method was 

used to generate lifespans with the same distribution (see Appendix A.1.1 for a 

description of this method) [84,85]. 

2) The sampled lifespans had to be rescaled to the dimension of RBC 

survival. This was achieved by multiplying each lifespan by the ratio of 

assumed median RBC age (in days) and median human age (in years). 

Applying this converting factor preserves the shape of the original distribution, 

while rescaling it to the dimension of RBC survival. A median RBC age of 115 
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days was assumed, according to the mean lifespan of pooled RBC survival data 

determined using 51Cr and the historically frequently used method of 

differential agglutination [34].  

3) This version of the model suffered from very long run times as the 

initial MATLAB code was very inefficient relying on multiple loops and 

excessive interim data storage.  

1.2.4.3.3. Relation to this thesis 

The work presented in the second part of this thesis is based on the newly 

proposed RBC lifespan model. In Chapter 2, the model is improved to 

overcome the above mentioned difficulties. It is furthermore enhanced to 

describe different labelling techniques commonly used to determine RBC 

survival in vivo.  

The ability of estimating all parameters in the final model from RBC 

survival studies using hypothetical, ideal labelling methods as well as currently 

available, non-ideal methods is assessed based on an information theoretic 

approach. The model is then applied to in vivo data to compare RBC survival in 

patients with CKD and healthy controls. 

1.2.5. RBCs and clinical data 

Besides measuring the lifespan of RBCs, various other data derived from 

RBCs can be used in clinical practice. It reaches from standard laboratory 

measurements of haematological parameters such as Hb concentrations or the 

mean corpuscular volume (MCV) to the most common marker of glycaemic 

control in diabetic patients, glycated haemoglobin HbA1c.  

In addition, RBCs can also serve as matrix to measure PK data for drugs 

that accumulate intracellularly. An example of this will be explored in Part III 

of this thesis where a population PK model for intracellular RBC concentrations 

of methotrexate (MTX) is developed.  
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1.3. Methotrexate 

MTX is a folate analogue that is widely used as an immune suppressant 

and anti-cancer drug because of its anti-inflammatory and anti-proliferative 

properties [86]. The structures of MTX as well as folic acid are shown in Figure 

1.15. 

In the following, a brief overview of MTX PK and PD will be given with 

emphasis on its use in rheumatoid arthritis (RA). 

 

 

Figure 1.15: Chemical structures of folic acid (A) and methotrexate (B). 
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1.3.1. Pharmacokinetics  

1.3.1.1. General pharmacokinetics of the parent drug 

MTX can be administered orally or parenterally. Absorption from the 

gastrointestinal (GI) tract is by means of an active transport mechanism which 

is saturable at high doses. The bioavailability of oral MTX doses less than 30 

mg/week is approximately 70% [86-88].  

A biphasic PK profile is observed after i.v. dosing of MTX that is best 

described by a two-compartment model [89-92]. In vivo metabolism of MTX is 

minimal; the main hepatic metabolite after high-dose administration of MTX is 

7-hydroxy-MTX which results from hydroxylation of the pteridin structure in 

the molecule. 81% of the administered dose is excreted unchanged via the 

kidneys within 48 hours [86]. Glomerular filtration and tubular secretion both 

play a role in the renal clearance of MTX [86]. 

1.3.1.2. Intracellular metabolism via polyglutamation 

Similar to folate, MTX is also taken up into cells via the reduced folate 

carrier (RFC) [93]. Inside the cells, the enzyme folylpolyglutamate synthetase 

(FPGS) adds glutamate moieties to the parent molecule in a stepwise manner, 

resulting in the formation of polyglutamated MTX metabolites (MTXPGs) [94-

96]. The MTX parent molecule contains one moiety of glutamate onto which the 

additional glutamates are added via -linkage forming a polyglutamate chain. 

A second enzyme, -glutamyl hydrolase (GH) catalyses the reverse reaction 

and cleaves one and/or two terminal moieties of glutamate [97]. MTXPGs 

accumulate intracellularly, as only the parent drug can leave the cells via multi 

drug resistance transporters (MDRT) of the ABC (ATP binding cassette) family 

[95,98,99].  
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1.3.2. Pharmacodynamics 

1.3.2.1. Postulated mechanisms of action 

As a folate analogue MTX inhibits a key enzyme in the folate pathway, 

dihydrofolate reductase (DHFR) (Figure 1.16) [100]. DHFR converts folate to its 

active form tetrahydrofolate which acts as an acceptor and donor of methyl 

groups in other enzymatic reactions. Inhibition of DHFR by MTX therefore 

affects all cellular processes that require C1-transfer.  

 

Figure 1.16: Folate pathway and mechanism of action of MTX. NADPH / NADP+ = 

nicotinamide adenine dinucleotide phosphate, SHMT = serine 

hydroxymethyltransferase, MTHFR = methylenetetrahydrofolate reductase. 
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MTX also interferes with DNA synthesis by direct inhibition of folate 

dependent enzymes such as 5-aminoimidazole-4-carboxamide ribonucleotide 

transformylase (ATIC) and thymidylate synthase (TYMS). These enzymes are 

essential for the de novo synthesis of purines and pyrimidines (Figure 1.17) [101-

103], and their inhibition is mainly responsible for the anti-proliferative action 

of MTX. In addition, MTX also has anti-inflammatory and immunosuppressant 

properties, which can be attributed to a reduction in the production of pro-

inflammatory cytokines such as interferon-, TNF- and interleukin 1 as a 

result of an increased intracellular accumulation and secretion of adenosine 

(Figure 1.17) [104,105].  

 

Figure 1.17: Anti-proliferative and anti-inflammatory mechanism of action of MTX. 

ATIC = 5-aminoimidazole-4-carboxamide ribonucleotide transformylase, TYMS = 

thymidylate synthase [106]. 

A more detailed illustration of the postulated pathway of action of MTX is 

provided in Appendix A.1.2, App Fig. 1.2.1. 
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MTXPGs are active metabolites that have been shown to exhibit an even 

higher affinity for folate dependent enzymes than MTX, and a similar affinity 

to DHFR [86,98]. At least part, if not the majority, of the activity of MTX can 

therefore be attributed to these active metabolites, and their intracellular 

accumulation results in a prolongation of the PD effects [86,95,107].  

Nevertheless, the exact mechanism of action of MTX in RA is still unclear, 

and it also remains unknown whether MTX has a local effect in the joint as well 

as systemic effects. 

1.3.2.2. Adverse effects 

The adverse effects of MTX are mostly associated directly with its anti-

proliferative mechanisms of action. It affects fast dividing cells such as hair 

follicles, mucosal cells of the GI tract, and the bone marrow, resulting in 

alopecia, mild to severe GI irritations, and myelosuppression, respectively [86]. 

In addition, adverse effects related to the central nervous system such as 

fatigue and loss of concentration can occur. Most severely, hepatotoxicity and 

pneumonitis may occur, albeit rarely [86,108]. Severe adverse effects require 

discontinuation of MTX therapy, while mild to moderate GI irritations after 

oral administration usually can be overcome by changing to parenteral 

administration [108]. 

1.3.3. Use of MTX in rheumatoid arthritis  

Low-dose MTX (usually ≤25 mg once a week) exhibits anti-inflammatory 

activity and is used in the therapy of several autoimmune conditions, such as 

inflammatory bowel diseases and RA [86,109].  

In RA, MTX is the gold standard disease modifying anti-rheumatic drug 

(DMARD) and is commonly given in doses of 10 – 25 mg once a week, either 

orally or via subcutaneous administration [108]. Rapid and effective disease 

control is desirable in RA to prevent irreversible joint damage [108]. However, 

the required dose is difficult to predict as it varies widely among patients.  
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In clinical practice, MTX treatment is usually started at a low dose (7.5 - 10 

mg/week) which is subsequently escalated according to clinical response [110]. 

Starting MTX treatment at maximum dose (25 mg/week) is generally avoided 

as it may result in GI adverse effects which are poorly tolerated resulting in 

patients discontinuing MTX treatment [111].  

Finding biomarkers that can be used to predict clinical outcomes, guide 

dose escalation and monitor MTX treatment is therefore of great clinical 

interest [108]. 

Note, that in this thesis the term “biomarker” will be used for any 

biological measure that has a predictive, but not necessarily a causative 

relationship with disease or treatment outcomes.  

1.3.3.1. Monitoring of MTX treatment in RA 

Most commonly, plasma concentration measurements such as steady 

state, peak or trough concentrations are used to monitor drug therapy. 

However, plasma concentrations of MTX are unsuitable for monitoring weekly, 

low-dose MTX treatment. MTX plasma concentrations fall below the limit of 

quantification (LOQ) within 24 hours after application and no steady state 

concentrations can be measured [112,113]. Currently, the literature provides no 

evidence for a correlation of clinical outcomes or adverse effects with alterative 

PK measures such as peak concentrations. In addition, the active metabolites 

MTXPGs contribute significantly to the activity of MTX, which may not be 

adequately reflected by measuring common biomarkers related to the parent 

drug only. Therefore, an alternative biomarker for monitoring of low-dose 

MTX treatment is required that correlates with clinical outcomes and/or 

adverse effects in RA and that can be measured easily.  
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1.3.3.1.1. RBC MTXPG concentrations 

Potential candidates as alternative biomarkers to monitor MTX treatment 

are MTXPG concentrations measured inside RBCs. As in other cells, MTXPGs 

accumulate inside RBCs. The simple access to RBCs and their abundance make 

them easy candidates for measuring intracellular MTXPG concentrations.  

However, RBC MTXPG concentrations have neither a known causal 

relationship with RA nor with the clinical outcomes of MTX treatment. RBCs 

are not involved in the pathology of RA and are also not located on the 

postulated pathway of action of MTX. Yet despite this lack of causality, RBC 

MTXPG concentrations could be used as a clinically reasonable biomarker to 

assess MTX treatment if there is a predictable correlation with the outcomes 

such as disease control and/or adverse effects. Such a correlation is debated in 

literature. Several studies have shown a correlation between disease control 

and RBC MTXPG concentrations [114-116], but these findings could not be 

verified in a more recent cross-sectional study [117]. A population PKPD model 

could prove useful to determine whether a predictable correlation between 

MTXPG concentrations in RBCs and clinical outcome of MTX therapy truly 

exists. 

In the third part of this thesis, a population PK model for RBC MTX and 

MTXPGs is developed using a top-down modelling approach. Such a model 

provides a better understanding of the time course of MTXPG accumulation 

inside RBCs and will facilitate future work assessing the correlation between 

RBC MTXPGs and disease outcomes and/or adverse effects of low-dose MTX 

therapy in RA in a full population PKPD model.  
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This chapter is partially based on the following peer-reviewed publication:  

Korell J, Coulter C, Duffull S (2011) A statistical model for red blood cell survival. 

Journal of Theoretical Biology 268(1):39-49. 
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2.1. Synopsis of the Chapter 

In this chapter, the development of the proposed statistical model for the 

lifespan of red blood cells (RBCs) (introduced in the Introduction Section 

1.2.4.3) is continued. Furthermore, sensitivity of the model to changes in the 

parameter values is explored and general (a priori) model identifiability is 

assessed using information theoretic principles. Finally, possible applications of 

this model to describe various pathological conditions are discussed. 

2.2. Introduction 

2.2.1. Previously proposed models for red blood cell survival 

Lifespan based indirect response (LIDR) models have been described 

successfully for natural cell populations and used to simulate the influence of 

various agents on the production of different cell types [72,118], e.g. the 

stimulating effect of erythropoietin (EPO) on reticulocyte count [72]. In these 

compartment models, the loss of cells from a population is not controlled by a 

first-order process. Instead, the cells leave the compartments either due to 

death by senescence or by differentiation into another cell type [72]. The 

transition time between the compartments is assumed to be equal for all cells in 

the population corresponding to a point mass distribution of lifespans which 

follows the simple assumption of a fixed lifespan of all cells [72].  

A more complex and arguably realistic approach is the implementation of 

a continuous lifespan distribution into the model. The influence of EPO on the 

reticulocyte population has been simulated by Krzyzanski et al. [75] using three 

different probability density functions (pdf): a gamma distribution, a lognormal 

distribution, and a pdf suggested by Dornhorst [69] that accounts for random 

destruction of the cells until they reach their finite lifespan and die due to 

senescence. Although more mechanistically focussed none of these lifespan 

distributions provided a better fit to the reticulocyte counts after administration 

of EPO than the fixed lifespan model.  
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Freise et al. [76] used a truncated three-parameter Weibull distribution to 

simulate a distribution of reticulocyte lifespans in sheep. Applying a time 

variant location parameter depending on the stimulation of RBC production, 

this distribution yields better results with respect to the underlying physiology 

than a time variant point mass distribution, which assumes a fixed lifespan for 

all cells stimulated at the same point in time.  

Recently, Kalicki et al. [80] compared the goodness of fit of several transit 

compartment (TC) models to data of RBC survival. They found a 29-TC model 

including random destruction to be superior to simpler TC models without 

random destruction. 

In contrast to these mostly parsimonious and application focused 

previous approaches, the underlying idea of the model proposed in the 

Introduction to this thesis (Section 1.2.4.3) was to obtain a mathematical 

description of the RBC lifespan distribution that is focused on the plausible 

processes of RBC destruction, with the intention of providing a new 

perspective on modelling the lifespan of RBCs, that might facilitate future work 

in this area.  

2.2.2. Red blood cell destruction mechanisms 

Four types of physiological destruction mechanisms of RBCs are 

plausible: 

 early removal of unviable RBCs from the circulation 

 age-independent random destruction 

 premature removal of misshapen RBCs 

 normal cell death due to senescence 

These complex mechanisms involved in RBC destruction contradict the 

assumption of a fixed lifespan for all RBCs. The multitude of mechanisms can 

only be described by a lifespan distribution and cohort labelling studies 

provide evidence for such a distribution [54,119]. Yet, the true shape of this 

distribution remains largely elusive, and none of the so far proposed 
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distributions accounts for all these possible physiological mechanisms of RBC 

destruction.  

2.3. Objectives 

Although not all of these processes of RBC destruction might be present 

simultaneously in an individual at any point in time, the objective here was to 

postulate a continuous lifespan distribution that is specific for the survival time 

of RBCs and that is in accordance with the plausible processes of RBC 

destruction in humans. It is intended to prove useful in future to inform RBC 

survival studies in healthy volunteers as well as in patients with various types 

of haemolytic disorders as the extent to which each of these processes 

contribute to the overall lifespan distribution can be varied in this model, 

which will be discussed later in this chapter.  

2.4. Model development 

2.4.1. Previous version of the model 

The underlying theory of the proposed model has been described in detail 

in the Introduction (Section 1.2.4.3). The model was implemented using the 

programming software MATLAB (The MathsWorksTM Inc., Natick, USA). 

In brief, a previously published survival model for humans [83] was 

rescaled to the time scale of RBC survival based on matching characteristics 

between human mortality and RBC destruction mechanisms (see Table 1.2 in 

Section 1.2.4.3.1 of the Introduction) [81,82]. The corresponding pdf over time t 

constitutes of a mixture of two Weibull distributions and is given by: 

  



Chapter 2: A statistical model for red blood cell survival time 

67  

 

       

        
              11

121
1

121
1

11

21
2

2121

22221

1








/rr/rr

RAWFWMIX

tr/rrtrrrtrtrexpm                

c/tstsexp/tsstc/tstsexpexp m            

tfmtfmtf

 

Equation 2.1: Probability density function of the proposed RBC lifespan model. 

Here, FW stands for flexible Weibull which is a function of the parameters 

s1, s2 and c, while RAW stands for reduced additive Weibull and the 

corresponding function is described by r1 and r2. Both these distributions are 

combined as fractions based on the mixing parameter m.  

As mentioned in the Introduction to this thesis (Section 1.2.4.3.2), the 

previous version of the proposed model suffered from several drawbacks: 

Firstly, it was based on a numerically intensive and time consuming code that 

followed each generated RBC individually over time using multiple loops in 

MATLAB. Secondly, the previously published human parameter values were 

used and individual rescaling of each lifespan based on the ratio of median 

RBCs survival (assumed to be 115 days) to median human survival was 

required. Both these issues had to be resolved to render the model suitable for 

future work. To address the first issue, a more efficient code was implemented 

in MATLAB, while the second issue was resolved by developing a specific 

model for the lifespan of RBCs. Both modifications are described in the 

following section. 

2.4.2. Modifications of the model 

2.4.2.1. Improvement of the run times 

To overcome the first drawback of very slow run times, the MATLAB 

code was improved using vectorisation. Here, RBCs are generated as entries in 

an array with the dimensions kp (production rate per day) times tBmax (time until 

“birth” occurs). Therefore, the corresponding column represents the day of 

“birth” for each cell, i.e. the day of release from the bone marrow. Each RBC is 

then assigned an individual lifespan, randomly drawn with replacement from 

the lifespan distribution. Subsequently, for every day of a simulation it is 
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checked whether each individual cell is born and still alive, or not. Living cells 

per day are summed up and plotted versus time t according to: 

  
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Equation 2.2: Lifespan distribution model for RBC survival. 

Here, N is the total number of RBCs in the simulation, kp denotes the 

constant production rate per day, tBmax is the time until “birth” occurs, tBi is the 

individual day of “birth” of the ith RBC and LSi is a random sample of an 

individual lifespan, which are distributed according to Equation 1.38 (). In this 

context, the day of “birth” is assumed to be the day of release into the 

circulation. This implies that reticulocytes and mature RBCs in the circulation 

are not distinguished, thus reticulocytes represent the fraction of the youngest 

RBCs in this model. 

2.4.2.2. Estimation of RBC specific parameters 

The requirement of individual rescaling of each RBC lifespan was 

addressed by estimating the RBC specific parameter values for Equation 1.38. A 

rescaled sample of 1,770,887 pre-posterior RBC lifespans was obtained based on 

the human pdf using the rejection sampling method (Appendix A.1.1). A 

histogram containing 200 bins was created from these samples and normalised 

based on the total number of sampled lifespans. This normalisation results in 

an integral (from zero to infinity) of one for the normalised histogram and 

converts the units of the y-axis from absolute count to relative frequency, 

which is equivalent to a probability density.  
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Figure 2.1: Normalised RBC lifespan histogram (blue stems indicating the midpoints of 

each bin) and corresponding normalised coordinates (blue line) based on 200 bins. x-

axis RBC lifespan in days, y-axis relative frequency = probability density f(t). 

Fitting the pdf given by Equation 1.38 to the coordinates of the mid points 

of the normalised bins allows estimating the RBC specific parameters for the 

model. The fitting was achieved by using a non-linear least square regression 

method implemented in MATLAB as function lsqcurvefit.  

However, when the parameter estimation was based on all 200 

normalised coordinates, the fit to the main maximum of the function described 

by the flexible Weibull distribution was given more weight compared to the fit 

to the reduced additive Weibull distribution part that accounts for the saddle in 

the profile. This resulted in a significant difference between the profile of the 

estimated pdf and the profile of the normalised coordinates. An empirically 

determined set of parameter values was able to capture the coordinate profile 

much better without noticeable loss in the fit to the shape of the main 

maximum (Figure 2.2).  
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Figure 2.2: Profile of the 200 normalised histogram coordinates (blue) compared with 

the empirically fitted pdf (green) and the estimated pdf (red) based on all 200 points. 

To improve the curve fitting procedure, the number of data points used 

for estimation was reduced to produce five data sets by removing every second 

coordinate from the original data set, resulting in data sets with 100, 50, 25, 

twelve and six normalised coordinates only. (Note that the pdf contains six 

parameters and therefore requires a minimum of six support points for 

parameter estimation.) Equation 1.38 was then fitted to each new data set. The 

difference between the original 200 normalised coordinates and the predictions 

based on each set of parameter estimates (based on the six data sets) was 

calculated and plotted against time (difference curve). By calculating the area 

between the difference curve and null (AUC) it was determined which set of 

parameter estimates provided the best fit to the original data. The fit was 

assessed based on the AUC value (the lower the better); however the ability to 

capture the profile of the original data in comparison to the empirical 

parameter set was also taken into account. The corresponding plots for all six 

data sets are given in Appendix A.2.1, while a summary of AUC values for the 

difference plots is given in Table 2.1.  
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Table 2.1: AUC of difference plots based on each set of parameter estimates. 

Set of parameter estimates AUC 

empirically determined  0.0682 

estimated based on 200 points 0.0644 

estimated based on 100 points 0.0616 

estimated based on 50 points 0.0600 

estimated based on 25 points 0.0584 

estimated based on 12 points 0.0588 

estimated based on 6 points 0.0665 

 

The data sets containing 25 and twelve normalised coordinates provided 

comparably low AUC values for the difference plots. However, the data set 

containing twelve support points was considered to be superior in capturing 

the original profile. The corresponding plots for this data set are shown in 

Figure 2.3. The parameter estimates obtained by fitting Equation 1.38 to this 

data set were used in the following as RBC specific parameter values and are 

given in Table 2.2.  

Table 2.2: RBC specific parameter values. 

Parameter Estimated value Units 

s1 0.0241 days-1 

s2 440.78 days 

r1 0.0140 days-1 

r2 8.9681 - 

c 0.0024 days-1 

m 0.8941 - 

 

Based on these parameter values a lifespan distribution specific for RBCs 

can be generated directly using the resampling method [84,85] described in 

Appendix A.1.1, without the requirement of rescaling. 
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Figure 2.3: Upper panel: Profile of the 200 normalised histogram coordinates (blue) 

compared with the empirically fitted pdf (green) and the estimated pdf (red) based on 

twelve points (pink). Lower panel: Difference plots for empirical and estimated pdf fits 

with area between difference curve and null (AUC). 

  



Chapter 2: A statistical model for red blood cell survival time 

73  

 

The final new MATLAB code for this RBC specific model is given in 

Appendix A.2.2 and was used for the following simulations. Note that similar 

simulations were also carried out during the preliminary work [81], and 

equivalence of the new coding method was ensured by recreating these in this 

chapter. 

2.5. Simulations 

Three simulations were conducted using the enhanced code for the 

model: 1) a group of 1000 RBCs all born on day one was simulated; 2) a 

constant daily production rate of 1000 RBCs during the first ten days was 

assumed; 3) constant production of 1000 RBCs per day was assumed to occur 

over 500 days to achieve a steady state of the total number of RBCs during this 

simulation.  

The assumption of a constant daily production rate is based upon the 

equivalent proposal of Schiodt [120]. This assumption was confirmed by 

comparing the variability in reticulocyte count over time as a useful metric to 

determine the production rate of RBCs [121]. Sandberg et al. [122] have shown 

that the variability within a subject is small in comparison to the between 

subject variability, which was confirmed by us [81,82] based on data of Seip 

[123]. Therefore, the production rate of RBCs in each individual can be 

assumed as constant in relation to the variability between different subjects. 

2.5.1. Simulation 1 

The simulation of a cohort of 1000 RBCs born on the first day results in an 

s-shaped disappearance curve. In Figure 2.4 the percentage of surviving RBCs 

is plotted versus time as dashed line. The early death of some of the RBCs 

accounts for the concave beginning of the disappearance curve. Afterwards, a 

small fraction of RBCs die due to random destruction and with increasing age 

the death rate increases due to senescence. The tailing at the end of the curve 

results from those cells that have been assigned a very long survival time much 

greater than the median.  



Chapter 2: A statistical model for red blood cell survival time 

 74 

 

 

Figure 2.4: Disappearance curve of the first simulation with 1000 RBCs born on day 

one (), and survival curve of the second simulation with a constant daily production 

rate of 1000 RBCs during the first ten days ( ). The y-axis is scaled to percentage of 

RBC survival. 

It needs to be noted that the resampling method used for defining 

survival induces Monte Carlo error in the apparent survival fraction. 

2.5.2. Simulation 2 

A similar survival curve is observed simulating a constant production of 

1000 RBCs per day during the first ten days. The solid line in Figure 2.4 

represents the percentage of surviving RBCs in this simulation. The descending 

part of the curve shows the same s-shaped pattern with a less pronounced 

initial concave part and tailing at the end as the disappearance curve in the first 

simulation. Steady state is not achieved in this simulation due to the short time 

of production which is less than the typical age. The daily production rate 

during the first ten days is bigger than the destruction rate on these days. 
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2.5.3. Simulation 3 

Assuming a constant daily production rate of 1000 RBCs over the first 500 

days results in a survival curve with steady state occurring after approximately 

180 days (Figure 2.5). 

 

Figure 2.5: Survival curve of the third simulation assuming constant production of 

1000 RBCs per day to occur over 500 days. After approximately 180 days steady state 

is reached until production stops after 500 days. Insert: Fluctuation in steady state. 

The number of RBCs keeps growing until all RBCs born on the first day 

have died. At this time steady state is reached. A smooth transition from the 

ascending part of the curve into the steady state is observed. This is due to the 

fraction of long-lived RBCs with a survival time of approximately 180 days 

which were born on the first day. As a result of the short survival time of some 

cells, the total number of RBCs in the steady state is less than the product of 

production rate and the median lifespan. In contrast, assuming a fixed lifespan 

for all RBCs results in a total number of RBCs at steady state that is equal to the 

product of production rate and lifespan (data not shown). The number of RBCs 

in this simulation fluctuates around a value of approximately 105,000 RBCs 

(Figure 2.5 insert). This fluctuation equates to variations of the randomly 

sampled lifespans (Monte Carlo error) as each single RBC is followed during its 
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entire lifetime. The descending part of the curve has lost the s-shaped pattern 

observed during the first two simulations. An initial concave part of the 

disappearance curve is no longer observed visually. Instead, an almost linear 

decline with a sharp onset and tailing at the end is present.  

2.6. Model application  

Here, the results of the simulations are compared with previously 

published RBC survival studies to show that the newly proposed RBC lifespan 

model is applicable for the interpretation of RBC survival studies. Previously 

reported survival curves obtained using cohort labelling methods as well as 

random labelling methods are considered.  

2.6.1. Cohort labelling studies 

The first simulation represents a hypothetical cohort labelling method 

using an ideal label, where only cells born on the same day are labelled. The 

corresponding disappearance curve of the labelled cells is equivalent to the 

dotted line in Figure 2.4. Unfortunately, such a label for RBCs does not exist 

and this simulation can therefore only serve as a theoretical example. 

The second simulation can be regarded as a simplified model of an in vivo 

survival study conducted by Shemin and Rittenberg [54]. These authors used 

glycine tagged with heavy nitrogen (15N) as a cohort label for RBC which is 

incorporated into haemoglobin (Hb) during the production of RBCs in the bone 

marrow. A comparison of their data and the second simulation is shown in 

Figure 2.6.  
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Figure 2.6: Survival curves for cohort labelling methods. Survival curve obtained by 

Shemin & Rittenberg using 15N ( with  as the observed data). The graph was 

digitally extracted and recreated from [54]. Survival curve obtained in the second 

simulation ( ). 

The constant production of RBCs over ten days assumed in this 

simulation equals to a prolonged incorporation of label during Hb synthesis. In 

both cases, an s-shaped disappearance curve is observed, although the initial 

concavity is not seen in the in vivo study. Furthermore, Shemin and Rittenberg 

almost observed a steady state with a smooth transition to a descending curve 

(Figure 2.6 dotted line), while in the simulation presented here, the early break 

down of some of the young RBCs results in an immediate start of the 

disappearance curve with a short initial concave part (Figure 2.6 solid line). 

There are two explanations for these differences: Firstly, the incorporation of 

the cohort label might not occur at a constant rate. It is likely, that a pool of 

labelled glycine is formed in the bone marrow. Subsequently, this labelled 

glycine is used for the synthesis of Hb during erythropoiesis, decreasing the 

pool of label over time. Therefore, the fraction of RBCs labelled during 

erythropoiesis would decrease over time as well. This can explain the plateau 

as well as the long presence of label in the circulation observed by Shemin and 

Rittenberg. In contrast, for simplification purposes it is assumed in the model 

that the production of labelled RBCs is constant over time. The second 
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explanation for the observed differences is a possible reuse of the label. A 

fraction of the released 15N-tagged glycine might be used for the formation of 

new Hb after the breakdown of the initially labelled cells, whereas in the 

simulation the label is assumed to be ideal without showing any reuse. This 

would also explain that the in vivo survival curve does not return to zero, even 

after almost 240 days which is twice as long as the commonly accepted lifespan 

of RBCs.  

Furthermore, an early disappearance of a small fraction of young RBCs 

and the presence of a small rate of random destruction cannot be observed in 

the study of Shemin and Rittenberg due to the irregular and long blood 

sampling intervals. Released label during the intervals from short-lived RBCs 

would already be reused when the next sample is taken. Otherwise, in the case 

of an even longer but reduced incorporation of the label during erythropoiesis, 

the continuous formation of tagged RBCs would obscure the loss of a small 

fraction of labelled cells. Hence, the lifespan distribution that was derived by 

Shemin and Rittenberg can only reflect those RBCs dying from senescence, 

whereas the distribution underlying the new model accounts for all plausible 

processes of RBC destruction. Here, each cell is followed individually in the 

model, resembling an almost ideal cohort labelling technique without reuse of 

the label and a constant daily production of labelled cells over a definite and 

known time period (ten days in the simulation).  

An alternative model for cohort labelling studies of RBCs has recently 

been presented by Kalicki et al. [80]. Using previously published data of RBC 

survival [124], they estimated the parameter values of a TC model (Figure 2.7A) 

as mean lifespan LS = 107 days, kRD = 0.00527 days-1, and kTR = NC/LS (days-1) 

with NC = number of compartments [personal communication]. To simulate the 

fractional survival of a RBC cohort the initial number of RBCs in the first 

compartment is set to 1, and it is assumed that kin = 0 days-1 to stop any further 

production. The resulting graph of RBC survival (Figure 2.7B dotted line) 

shows a similar pattern as the first simulation using the newly proposed 

lifespan distribution model (Figure 2.7B solid line). However, due to the 
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empirically chosen median RBC age of 115 days in the lifespan distribution 

model compared to the shorter mean RBC lifespan of 107 days and the higher 

rate of random destruction in the TC model, the overall survival of the RBC 

cohort is longer using the lifespan distribution model. This is reflected in 

Figure 2.7B by the right shift of the survival curve of the proposed lifespan 

distribution model compared to the curve of the TC model. Additionally, the 

TC model does not account for the selective early break down of younger RBC 

whereas with the new model early death can be seen as an initial concave part 

of the survival curve. 

 

Figure 2.7: A Compartment model with random destruction and variability of RBC 

lifespan as proposed by Kalicki et al. [80]. NC = Number of compartments, kin = rate 

constant of RBC production, kRD = rate constant of random destruction, kTR = rate 

constant of transit and LS = mean RBC lifespan. B ( ) Survival fraction of an RBC 

cohort (RBC1 = 1) simulated with the transit compartment model for NC = 29, LS = 

107 days, kTR = NC/LS (days-1), kin = 0 days-1, kRD = 0.00527 days-1. ( ) Survival 

fraction of an RBC cohort simulated with the newly proposed lifespan distribution 

model assuming a median RBC age of 115 days. 
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2.6.2. Random labelling studies 

In a comprehensive review on the analytical interpretation of RBC 

survival studies Dornhorst illustrated the effect of normally distributed 

lifespans on the survival curve of RBCs in healthy individuals where no 

random destruction and early death of RBCs were assumed to occur [69]. 

Applying this distribution, the author predicted a straight line with tailing at 

the end as the disappearance curve for a random labelling technique such as 

Ashby’s agglutination technique [55] (Figure 2.8A). The descending part of the 

survival curve obtained in the third simulation equates the predicted 

disappearance of cells assuming labelling to occur on day 500 (Figure 2.8C). 

The International Committee of Standardization in Hematology (ICSH) 

suggests a reference method for conducting RBC survival studies using 

radioactive chromium (51Cr) [66]. This method should yield a straight line for 

the disappearance of label from circulation as well; provided that the data is 

corrected for random loss of the label from the cells and that death of RBCs 

occurs largely due to senescence (Figure 2.8B). The disappearance curve 

observed using this method equals the descending part of the survival curve in 

the third simulation (Figure 2.8C), although the model also accounts for 

random destruction and early disappearance of a small fraction of cells. The 

small rate of random loss present in healthy individuals is neglected in the 

interpretation of the ICSH for the sake of simplification as it is difficult to 

estimate with the labelling methods currently available. The same holds true 

for early loss of RBCs.  

 

following page: 

Figure 2.8: Survival curves obtained using random labelling methods. A Survival 

curve as predicted by Dornhorst assuming a normal distribution of RBC lifespans with 

L = mean lifespan. Digitally recreated from [69]. B Disappearance curve proposed for 

51Cr labelled cells, uncorrected ( ) and corrected for random loss ( ). C 

Disappearance curve obtained in the third simulation using the lifespan model. 
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2.7. Ability of parameter estimation 

The aim of this section is to investigate whether the parameters of the 

survival function corresponding to the RBC pdf could be estimated from an in 

vivo RBC survival study and at what times blood samples should be taken to 

measure RBC counts. The blood sampling times were determined by applying 

a local D-optimal design criterion [29]. A description of D-optimal design is 

given in the Introduction to this thesis (Section 1.1.5). The determinant of the 

Fisher Information matrix was maximised using an exchange algorithm 

implemented in MATLAB (Appendix A.2.3). 

A hypothetical in vivo study with 100 patients using an ideal radioactive 

RBC cohort label without reuse of the label was assumed. Measurement noise 

was included by assuming an additive error of 36 counts per minute. This 

value equals to 12% of the average number of counts per minute during the 

experiment, which was set to 300. Optimal blood sampling times were 

determined to be on day 4, 64, 75, 87, 120 and 148 after labelling (Figure 2.9).  

 

Figure 2.9: Disappearance of an ideal cohort label with optimal time points for blood 

sampling at day 4, 64, 75, 87, 120 and 148 after labelling. 
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The percentage standard error for the parameter estimates given as the 

diagonal elements of the inverse Fisher Information matrix are shown in Table 

2.3. All six parameter estimates, except r2, have a standard error of <10% and, 

therefore, could be estimated from this hypothetical in vivo study with good 

precision. The imprecision of the estimate of r2 was slightly larger at 33%. 

Table 2.3: Percentage standard error (SE) for the parameter estimates from a 

hypothetical in vivo RBC survival study with 100 patients using an ideal cohort label. 

Parameter r1 r2 s1 s2 c m 

SE (%) 4.25 33.07 2.39 2.81 8.30 1.30 

 

2.8. Influence of parameter changes 

The influence of changes in the RBC specific parameters on the pdf is 

shown in Figure 2.10. 

The location of the maximum of the reduced additive Weibull distribution 

(equals the saddle of the mixed pdf shown in Figure 2.10), which accounts for 

the reduced lifespan of misshapen RBCs, is controlled by parameter r1 (Figure 

2.10A). Increasing the value of r1 results in a decreased lifespan of misshapen 

RBCs.  

Parameter r2 controls the shape of the reduced additive Weibull 

distribution (Figure 2.10B). Increasing the value of r2 results in an increasing 

number of misshapen RBCs with reduced lifespan without having an effect on 

the location of the maximum of the reduced additive Weibull distribution.  

 

following page: 

Figure 2.10: Influence of parameter changes on the shape of the RBC pdf. ( ) 

parameter values estimated for RBC pdf. ( )  +25% change (respectively m = 1), ( ) 

-25% change in the corresponding parameter value. A detailed description is given in 

the text on the following pages. 
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The parameters s1 and s2 control the location of the maximum of the 

flexible Weibull distribution (equals the maximum of the mixed pdf), while s1 

also has influence on the location of the probability region associated with this 

density of the distribution. Increasing the value of s1 shifts the maximum to 

lower values, therefore decreasing the lifespan of normal RBCs dying due to 

senescence, while the shape of the distribution is additionally narrowed (Figure 

2.10C). On the other hand, increasing the value of the true location parameter s2 

increases the lifespan of normal RBCs without an effect on the location of the 

central density of the distribution (Figure 2.10D). Therefore, s2 is of particular 

interest as it can be described as a function depending on environmental factors 

or drug dosages, which will then allow the estimation of a reduced or 

prolonged RBC lifespan under the influence of these factors or drugs within 

any candidate model. 

The constant hazard rate accounting for random destruction of RBCs is 

solely controlled by c. Increasing the value of c increases the number of RBCs 

dying of random destruction and therefore reduces the number of RBCs dying 

due to senescence as well (Figure 2.10E).  

Finally, the mixing parameter m controls the extent to which each of the 

underlying distributions contributes to the mixed model. Increasing the 

influence of the reduced additive Weibull distribution by decreasing the value 

of m results in a higher early death and number of misshapen RBCs with a 

reduced lifespan and decreases the number of normal RBCs dying due to 

senescence (Figure 2.10F). Vice versa, increasing m increases the influence of the 

flexible Weibull distribution, therefore increasing the number of RBCs dying 

due to senescence and reducing early death and the number of misshapen 

RBCs. For m = 1 (dashed line in Figure 2.10F) the reduced additive Weibull 

distribution is completely removed from Equation 1.38, leaving only random 

destruction and death due to senescence.  

Future work using this model might include expressing these parameter 

values as functions of physiological factors, like the production of EPO or 

various pathological states. This allows changing the extent to which each 
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process of RBC destruction is represented in the lifespan distribution, and 

provides an opportunity to adapt the model according to actual clinical 

situations.  

2.9. Possible application in pathological states 

This section gives three examples to demonstrate the possible application 

of the model to pathological states that involve altered conditions of RBC 

destruction: stress erythropoiesis, sickle cell anaemia, and immune-mediated 

haemolytic anaemia. 

2.9.1. Stress erythropoiesis 

During stress erythropoiesis RBC production is increased as a result of 

increased EPO production under hypoxic conditions. There is evidence that the 

survival of RBCs produced under acute stress conditions is decreased [37].  

Both, acute and chronic stress erythropoiesis can be accommodated in the 

model: The increased RBC production can be described by an increased 

production rate while the reduced RBC survival in the acute state could be 

expressed dependent on the underlying mechanism as a shift of the senescence 

component (maximum of the flexible Weibull distribution) to the left, an 

increase in random destruction or an alteration in the density associated with 

misshapen RBCs. These alterations in the model parameter values would either 

occur over a defined period of time in the case of an acute insult, or be 

permanent in the presence of chronic conditions. 

2.9.2. Sickle cell anaemia 

Sickle cell anaemia is characterized by abnormally shaped, rigid RBCs 

with a shortened survival in comparison to normal shaped cells. The reason is a 

mutation in the Hb gene resulting in faulty Hb which aggregates in the absence 

of oxygen in the venous system. This polymerisation leads to a deformation of 

the RBCs which over time becomes irreversible. The misshapen RBCs cannot 

pass through narrow capillaries due to their rigidity and increased intra- and 
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extravascular haemolysis occurs [34]. These processes lead to an increased 

random destruction of RBCs and a significantly shortened survival of the RBCs 

in comparison to healthy normal subjects [125]. Although heterozygous carriers 

of the sickle cell gene are usually assumed to have normal RBC morphology, 

some indication is given that these patients show a variable fraction of 

misshapen, sickle-like RBCs [126]. As these cells show morphological features 

similar to the fully sickled cells in homozygous carriers, they are likely to have 

a shortened survival in comparison to normal shaped cells.  

It is therefore possible to include the homozygous and heterozygous form 

of the sickle cell disease in the model as follows: The RBC lifespan distribution 

is assumed to lack the senescence component in homozygous carriers. Instead 

all cells die at early times either due to a drastically increased random 

destruction or due to early splenic sequestration as a result of their 

deformation. The early destruction can be expressed mathematically by a 

dramatic reduction in the density of the main maxima of the pdf as almost no 

cells die due to normal senescence while the saddle accounting for early death 

of misshapen RBCs will increase as virtually all cells are misshapen. Random 

destruction governed by parameter c will additionally be elevated in 

comparison to normal conditions. In contrast, in heterozygous carriers of the 

sickle cell gene the pdf is suspected to express a shape similar to the one 

presented here including the saddle for the early destruction of the misshapen 

RBCs in addition to the normal death of RBCs due to senescence. The location 

and size of the saddle would be dependent on how severely the survival of the 

deformed cells is affected. 

2.9.3. Immune-mediated haemolytic anaemia 

Immune-mediated haemolytic anaemia is characterized by the formation 

of autologous antibodies against RBC membrane proteins [34]. RBCs with 

bound antibodies are subsequently removed from the circulation by the 

immune system and in the spleen and liver. This type of haemolytic anaemia 

can therefore be regarded as a pathological condition with an increased 
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random destruction of RBCs as there is no indication of an age-dependent 

factor. The model is able to account for this type of altered RBC destruction by 

an increase of parameter c, while the density of the senescence component of 

the pdf would be decreased or even missing dependent on the severity of the 

anaemia and therefore the random destruction. 

2.10. Discussion 

2.10.1. Model development 

The purpose of this model was to describe RBC survival using a lifespan 

distribution that accounts for the possible physiological mechanisms of RBC 

destruction. Since there is no reliable information available on the actual 

distribution of RBC lifespans in humans, it was necessary to empirically choose 

a pdf for this purpose. The chosen distribution accounts for all potential hazard 

types resulting in the death of RBCs: senescence, random destruction, death 

due to initial or delayed failures. This is the first time that early death is 

incorporated into a model of RBC survival. It accounts for unviable RBCs that 

are destroyed shortly after their release, and also for neocytolysis, the selective 

destruction of the youngest RBCs [41]. 

The previous version of this model relied on rescaling of human lifespans 

and was implemented in MATLAB using a time consuming code. Here, these 

drawbacks were eliminated by vectorising the MATLAB code and estimating 

the RBC specific parameter values for the pdf from a normalised histogram of 

the rescaled RBC lifespan distribution. Based on these RBC specific parameters, 

a lifespan distribution for RBCs can be generated directly without the need for 

rescaling. Note that since the inverse cumulative density function for the pdf is 

not available in closed form a sampling based algorithm is required for 

generating lifespans. For the simulations with the model, each RBC is assigned 

a discrete lifespan, randomly drawn with replacement from this RBC lifespan 

distribution. Each individual RBC is then followed during its entire lifespan. 
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This results in a more comprehensive model of RBC survival than has 

previously been developed. 

In contrast to other work, where reticulocytes and RBC production in the 

bone marrow are an essential part of the model, this work focuses on the 

disappearance of RBCs from the circulation. The day of “birth” in the model is 

assumed to be the day of the release of a cell from the bone marrow into the 

circulation. Reticulocytes and mature RBCs were intentionally not 

distinguished in this context. It is unlikely that there is a difference between 

both types of red cells in terms of labelling. Cohort labels are incorporated 

during erythropoiesis in the bone marrow and, therefore, are already present in 

the cells at the time of release into circulation, whereas the uptake of a random 

label into reticulocytes should not deviate largely from the uptake into mature 

RBCs. Therefore, reticulocytes are assumed to represent the fraction of the 

youngest RBCs in the model. 

2.10.2. Simulations 

Adequacy of the new version of the model compared to the old code was 

ensured by recreating three simulations that had already been part of previous 

work [81]. The results obtained with the new code are equivalent to the earlier 

ones for all three simulations. 

The assumption of a constant daily production rate in the second and 

third simulation is based on the lower within subject variability of the 

reticulocyte count compared to the between subject variability, as the 

reticulocyte count is a useful method to determine erythropoiesis activity [121]. 

Nevertheless, this assumption holds only as long as normal steady state 

conditions are present. Any alteration of the erythropoietic feedback circle 

combining oxygen partial pressure, EPO production and erythropoiesis will 

ultimately result in a change of the production rate of RBCs.  

For the simulations presented here, the value for the production was set 

to 1000 RBCs per day as there is no need for the true value in the presented 
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simulations. It should be noted that the value of 1000 is arbitrary and does not 

affect the generalisability of the model.  

2.10.3. Model application 

Comparison of the newly developed model to previously observed or 

proposed RBC survival curves demonstrate the applicability of the model for 

simulating the survival time of RBCs. Importantly, the model is able to describe 

survival curves similar to those observed using cohort labelling methods, as 

well as those proposed for random labelling of RBCs. Therefore, it is possible to 

use the model for the interpretation of future RBC survival studies. 

The first simulation equals the ideal case of labelling a cohort of RBCs all 

born on the same day. However, this is unlikely to occur in practice as cohort 

labels are normally incorporated into Hb during erythropoiesis over several 

days. Therefore, the second simulation is a more realistic model for cohort 

labelling studies, as RBC production is assumed to occur over several days in 

this simulation. However, the incorporation of a label during erythropoiesis 

might not be constant, which is assumed for simplification in the current 

model. Furthermore, the predicted disappearance curve of the simulation does 

not account for a possible reuse of the label. In both cases it would be 

straightforward to incorporate corresponding correcting factors into the model 

to simulate the survival curves actually observed using these methods. This 

will be explored in the next chapter of this thesis. 

The third simulation can be regarded as a model for random labelling 

studies. Regarding Ashby’s historical method of differential agglutination, 

transfusing donor RBCs into a recipient is similar to stopping the production 

and merely observing their following disappearance. In the third simulation 

the transfused sample equals a fraction of RBCs taken on day 500 containing 

cells of all ages. Regarding other random labelling methods, the labelled RBCs 

parallel a blood sample taken on day 500, which is reinjected into the donor’s 

circulation after labelling on the same day. However, this simulation equates 

labelling of RBCs with an ideal label that is not lost from the cell during 
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circulation and does not decay. It would be necessary to extend the model for 

simulations of the actually observed survival curves. For example, to simulate 

the observed survival curves in 51Cr studies, it is necessary to include factors 

that account for the radioactive decay, the dissociation of the chromium-

haemoglobin complex, and the loss of label due to vesiculation of Hb. Again, 

the next chapter of this thesis will address these required modifications. 

2.10.4. Ability of parameter estimation 

It was shown that all six parameters of the corresponding survival 

function could be estimated with good precision from a hypothetical in vivo 

RBC survival study with 100 patients using an ideal RBC cohort label. 

However, this is based on the assumption that the label is only incorporated 

into RBCs born on the same day and that no reuse of the label is present. 

Further work is required to evaluate the ability of parameter estimation from in 

vivo studies using currently available labelling methods. It is thereby necessary 

to account for the specific shortcomings that are associated with any given 

label.  

In addition, the local D-optimal design applied here assumes the values of 

the parameters in the model are known exactly. Yet, this would not be the case 

when estimating the parameters from a RBC survival study. Parameter 

uncertainty should therefore be taken into account when designing RBC 

survival studies using this model, e.g. by applying a robust D-optimal design 

criterion. 

2.10.5. Influence of parameter changes 

Given the flexibility in the parameter set, adjustments of the model are 

possible to account for various haemolytic disorders by modelling the data and 

allowing one or more parameter to be estimated. Expressing the parameters as 

functions dependent on physiological factors could be used to control the 

influence each of the destruction processes has in an individual, as these 

processes might not be equally present simultaneously in each individual. 
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Additionally, drug effects can be included into the model by describing specific 

parameters as a function of the dose of a drug.  

The location parameter s2 is of particular interest regarding these possible 

variations, as it controls the location of the maximum of the pdf without having 

influence on the density of the function. For example, haemolytic disorders 

which lead to a shortened survival of normal RBCs can be expressed by 

incorporating a model for s2 which results in a reduction in the value of the 

location parameter s2 depending on the severity of the disease. Another 

possible scenario would be an acute stress erythropoiesis, where the 

production of RBCs is increases over a short period of time due to elevated 

endogenous EPO production or the administration of exogenous EPO. The 

resulting EPO dependent decrease of the lifespan of normal RBCs can again be 

expressed as a function of the location parameter s2 depending on the dose of 

EPO in the model. 

Other parameters of interest for incorporation of possible environmental 

effects are the random hazard rate c, controlling the rate of random destruction, 

and the mixing parameter m. Increasing the number of misshapen RBCs with 

reduced lifespan and increasing early death can be achieved by decreasing the 

mixing parameter m resulting in an increasing influence of the reduced additive 

Weibull distribution on the combined pdf. Furthermore, by fixing m to 1 

Equation 1.38 simplifies to the flexible Weibull distribution. In this case, the 

lifespan distribution only accounts for random loss and death due to 

senescence controlled by the parameters s1, s2 and c. This option might be used 

for the sake of parsimony and can serve as a good approximation in healthy 

individuals, where the amount of early death and misshapen RBCs seem to be 

fairly small. 

2.10.6. Possible application in pathological states 

The applicability of the model in pathological states involving altered 

conditions of RBC destruction has been described using three examples: stress 

erythropoiesis, sickle cell anaemia and immune-mediated haemolytic anaemia. 
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Due to the flexibility of the model, all three states are assumed to result in 

certain alterations of the underlying RBC lifespan distribution which would be 

described by changes in the parameter values. This might provide a deeper 

insight in the pathophysiology of these diseases when applied to RBC survival 

data in patients suffering from any of these or similar conditions. However, this 

needs to be proven in future studies. 

2.11.  Conclusion 

The newly developed model is able to simulate the survival time of RBCs 

and yields survival curves similar to those previously published for RBC 

survival studies using different labelling methods.  

The underlying pdf of RBC survival time not only accounts for age-

dependent removal from circulation due to senescence, but also for random 

destruction during the circulation in the body, for the early destruction of 

unviable RBCs, a shortened lifespan of misshapen cells, and for the mechanism 

of neocytolysis. Thus, the model reflects the known physiology of RBC 

destruction.  

All parameter values controlling the survival of RBCs in this model could 

be estimated from a hypothetical in vivo RBC survival study using an ideal 

labelling method. However, future work is required to assess the ability of 

parameter estimation from in vivo survival studies using existing labelling 

methods that are inherently flawed. This will be assessed in the following 

chapter of this thesis. 

Furthermore, the application of the model for various haemolytic 

disorders is expected to result in alterations of specific parameter values, which 

will provide deeper insight into the pathology of these diseases. Drug effects 

can be included into the model as dose-dependent functions of specific 

parameter values. 
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This chapter is based on the following peer-reviewed publication:  

Korell J, Coulter C, Duffull S (2011) Evaluation of red blood cell labelling methods 

based on a statistical model for red blood cell survival. Journal of Theoretical Biology 

291(0):88-98.  
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3.1. Synopsis of the Chapter 

Here, the model developed in the previous chapter is enhanced to 

describe currently available red blood cell (RBC) labelling methods. It is 

furthermore assessed whether these methods are informative enough to 

support full parameter estimation of the model using a robust optimal design 

approach. 

3.2. Introduction 

An accurate estimation of the lifespan of RBCs is desirable. This would be 

particularly valuable for predicting the time to reach new steady state values of 

haematocrit in patients undergoing treatment with erythropoietin [127]. In 

addition, many diseases utilise measures that relate to RBC lifespan to provide 

an estimate of disease activity, for example, glycated haemoglobin (HbA1c) as a 

biomarker for glycaemic control [128]. 

3.2.1. Estimation of the RBC lifespan using labelling methods 

Estimation of the lifespan of RBCs is possible by using a label that stays 

with the cells during their circulation in the body. In general, two types of 

labelling methods have been developed: cohort labelling, where cells of a 

certain age are labelled, and random labelling, where all cells present at one 

moment in time are labelled irrespectively of their age (equivalent to 

population labelling). However, all current labelling methods contain 

significant flaws, resulting in potentially inaccurate estimates of the RBC 

lifespan.  

A cohort labelling method such as heavy nitrogen (15N), or radioactive 

iron (59Fe), incorporates the label into RBC precursor cells during their 

production in the bone marrow, usually as a substrate used in haemoglobin 

(Hb) synthesis. Subsequently, these labelled precursor cells develop into 

reticulocytes and are released into the circulation where they mature into RBCs. 

However, the incorporation of the label into the precursors does not occur 
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instantly after administration of the label and may be prolonged over several 

days. Therefore, the resulting labelled RBCs are not exactly of the same age 

[38]. In addition, cohort labelling methods suffer from reuse of the label in the 

production of further RBCs [36]. An advantage of cohort labelling methods is 

that they do not require ex vivo manipulation of the cells. In contrast, the 

labelling process using random labelling methods is in general conducted ex 

vivo which can damage the cells and thus might affect their subsequent 

survival in the circulation. These methods also appear more sensitive to loss of 

the label via dissociation of the label from the viable RBC as well as radioactive 

decay. This is particularly notable for labelling with radioactive chromium 

(51Cr) [57,129]. Both labelling methods, cohort as well as random, suffer from 

loss of label due to vesiculation of Hb from viable RBCs [68].  

Other methods, such as carbon monoxide (CO) exhalation, have been 

developed to determine RBC turnover without depending on a label 

[62,63,65,130,131]. While CO exhalation avoids reuse and label loss, except 

vesiculation, it is confounded by environmental issues and only gives a 

measure of RBC turnover at a certain time point. It does not allow following the 

cells during their lifetime. Therefore, CO exhalation is not considered in this 

work.  

Due to the flaws inherent in all present labelling techniques an ideal 

labelling method is currently not available and the mean lifespan and the 

distribution of lifespans of RBCs remain elusive. To obtain an accurate 

estimation of the RBCs lifespan it would either be necessary to overcome these 

flaws in the development of new labels, or to account for them during the 

calculation of the RBC lifespan from the data obtained. The former approach 

seems to be unlikely in the near future. However, modelling RBC survival data 

using methods that not only can account for the flaws inherent in various RBC 

labelling techniques but also differentiate between RBC destruction processes 

might prove fruitful to overcome the shortfalls associated with the current 

labels. 
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3.2.2. Previously developed RBC lifespan model 

In the previous chapter, a statistical model for the survival time of RBCs 

with respect to the physiology of RBC destruction was developed. The 

underlying distribution of RBC lifespans accounts for known processes of RBC 

destruction in the body, including death due to senescence, random loss during 

circulation, as well as death due to early or delayed failure. The resulting 

survival model was used to simulate in vivo RBC survival studies using 

different ideal RBC labelling methods. Predictions from the model agreed well 

with models from the literature for both, cohort and random labelling methods. 

However, the model did not account for the above mentioned flaws associated 

with real labels for RBCs. 

3.3. Objectives 

The overall aim of this chapter was to compare the performance of 

commonly used labelling methods for RBCs. This was carried out by 

addressing the following three specific objectives: 1) To include known flaws 

associated with 51Cr and 15N into the RBC survival model. 2) To assess the 

theoretical identifiability of the model, i.e. the ability to estimate all parameters 

in the model, based on ideal cohort and random labelling experiments. 3) To 

evaluate whether the parameter values can be estimated from non-ideal 

labelling studies using 51Cr or 15N, and to compare the performance of both 

labelling methods in terms of the precision of parameter estimation.  

It is important to assess the theoretical behaviour of the model so that any 

future experiments can distinguish issues with model performance (i.e. 

structural identifiability issues) from issues associated with the particular data 

set to be analysed (i.e. deterministic identifiability issues). 
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3.4. Methods 

3.4.1. RBC survival model 

A statistical model for the survival time of RBCs was implemented in 

MATLAB (The MathWorks Inc., Natick USA) based on the work of 

Bebbington et al. [83] and adapted to describe RBC survival in the previous 

chapter. This RBC survival model was enhanced in this chapter to provide the 

survival function S(t) (Equation 3.1) that is mathematically equivalent to the 

RBC lifespan distribution used earlier (see Introduction Section 1.1.3 and 

Appendix A.3.1). 

The survival of a single cohort of RBCs born on the same day to time t is 

described by the following equation 

     

       22 1
11

21

exp1        

 expexp  

/rr
trtrm

+tc/tstsm=tS






 

Equation 3.1: Survival function for a cohort of RBCs born on day t = 0. 

where s1 and s2 control normal death of RBCs due to old age (senescence), 

r1 and r2 describe a reduced survival of faultily produced RBCs resulting in 

early or delayed failure, c controls random destruction irrespectively of age, 

and m is a mixing parameter combining both parts of the function. Figure 3.1 

shows the underlying RBC lifespan distribution and indicates which parts of 

the distribution are controlled by these parameters. 
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Figure 3.1: Underlying RBC lifespan distribution that accounts for four plausible 

physiological mechanisms of RBC destruction. Parameters in the survival model 

controlling these mechanisms are indicated. 

Previously, values for these parameters were estimated by assuming a 

median RBC lifespan of 115 days (Table 3.1). The assumption of 115 days is for 

convenience and it is unnecessary to apply this assumption when modelling 

RBC survival data.  

Correspondingly, the mean lifespan L  based on these parameter values is 

100 days, calculated according to [132]:  

 




0

 dttS  L  

Equation 3.2: Mean RBC lifespan. 

It is assumed that the day of birth is equal to the day of release into the 

circulation. This implies that the model does not require a distinction between 

reticulocytes and mature RBCs. Here it is assumed that reticulocytes represent 

the fraction of the youngest RBCs in the model and their survival along with 

mature RBCs can be estimated. 
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Table 3.1: Survival function parameters, corresponding processes of RBC destruction, 

and nominal parameter values with upper and lower point estimates of the robust design. 

Parameter Mechanism of RBC destruction Nominal value 
Lower point 

estimate 
Upper point 

estimate 
Units 

s1 Senescence 0.0241 0.0227 0.0256 days-1 

s2 Senescence 440.78 414.26 468.99 days 

r1 Reduced lifespan due to delayed failure  0.0140 0.0132 0.0149 days-1 

r2 Reduced lifespan due to initial failure 8.9681 8.4295 9.5404 - 

c Constant random destruction 0.0024 0.0023 0.0026 days-1 

m Mixing parameter* 0.8941 0.8403 0.9512 - 

*Defines the probability density of the senescence and random destruction component,  

while the probability density of the reduced lifespan part is scaled to (1-m). 
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The product of the survival of RBCs from Equation 3.1 and the number of 

RBCs born per day provides the model for labelling a single cohort of RBCs 

born on the same day. This would be equal to an ideal cohort labelling method 

where the label is only incorporated on the day of administration.  

The combined survival of (multiple) cohorts born on different days can be 

described by the following integral over time t: 

      tdττtS τk= tN

t

pRBCs   0     with   

0

   

Equation 3.3: Combined survival of multiple cohorts of RBCs. 

where kp is the production rate of RBCs on each day  (number of RBCs 

produced per cohort), S() is the survival of each cohort according to Equation 

3.1, and NRBCs(t) is the total number of cells present at time t [76,132]. 

To simulate an ideal random labelling method, RBC production has to 

occur until the number of RBCs has reached steady state. Stopping the 

production at an arbitrary time point at steady state and subsequently 

observing the disappearance of the cells is equivalent to labelling all RBCs 

present at this time point and then observing the disappearance of the label 

[132]. In all simulations presented here and without loss of generality one unit 

of label is assumed to bind to one RBC.  

3.4.2. Simulation of random labelling studies using radioactive chromium 

51Cr labelling is the most common method used for labelling RBCs. It is 

conducted ex vivo by using radioactive sodium chromate (Na251CrO4). The 

chromate anion containing hexavalent chromium can penetrate into RBCs, 

where the chromium binds to Hb and, subsequently, is reduced to the trivalent 

state [133]. 51Cr is lost during the circulation from viable RBCs due to three 

different mechanisms (Figure 3.2): 1) vesiculation of Hb together with the 

bound label [68], 2) decay of the radioactive label, and 3) dissociation of the 

chromium-haemoglobin complex and subsequent diffusion out of the RBC for 

which the overall process has been termed “elution” [57,67].  
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Figure 3.2: Labelling with radioactive chromium and loss of the label from RBCs 

during their circulation. 1 Ex vivo labelling using radioactive chromate and binding to 

haemoglobin with reduction of the hexavalent chromium to the trivalent state.  

2 Elution: a Dissociation of the chromium-haemoglobin complex (reversible process),  

b loss of trivalent radioactive chromium from the cell (irreversible process).  

3 Vesiculation of haemoglobin together with bound label.  

4 Radioactive decay with a half-life of 27.7025 days to stable vanadium. 

Reuse of the lost label for labelling other RBCs is not possible, as the 

cationic trivalent chromium cannot penetrate into RBCs again [56]. All three 

processes of loss were incorporated into the RBC model independently and 

their effect on the disappearance of the label was evaluated individually and in 

combination.  

Vesiculation was reported to result in a loss of approximately 20% of the 

total Hb content over the lifetime of RBCs [68,134,135]. It was also suggested 

that the rate of vesiculation might be higher in older RBCs [68,136,137]. 

Therefore, loss of label due to vesiculation of Hb was incorporated into the 

survival model as a percentage loss of each RBC, with 80% of the Hb cell 

content still being present at the median survival of 115 days. A linear loss and 

an increasing loss with increasing age were considered according to the 
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following equation where summation was used to approximate the solution of 

Equation 3.3: 

        v
v

t

b=

pv btkt-bSbktN   1

0

 

with kv = 0.2/(115 days)n 

where v = 1 for linear loss 

and  v > 1 for increasing loss. 

Equation 3.4: RBC survival corrected for vesiculation. 

Nv(t) is the total number of surviving RBCs at time t after loss due to 

vesiculation, b is the day of birth of the bth cohort of RBCs, kp(b) is the 

production rate of RBCs on day b, S() is the survival of the bth cohort according 

to Equation 3.1, kv is the vesiculation rate constant that results in a 20% loss per 

RBC over 115 days, and v controls the rate of vesiculation. In this chapter, only 

integer values of v were considered with v = (1, 2). Note here that for v > 2 the 

loss due to vesiculation would become too extensive after reaching 115 days, 

confounding the normal death of the cells governed by the underlying survival 

model. (Appendix A.3.2 provides additional information on the derivation of 

Equation 3.4 as well as the following equations.) 

Elution and radioactive decay were both included in the model as random 

processes. The half-life of 51Cr is 27.7025 days (t1/2Cr) [138], while elution was 

reported to occur to approximately 1% of the remaining label per day in 

healthy individuals [57,139,140]. This results in a half-life of approximately 70 

days for the loss due to elution (t1/2el). The final model for simulating random 

labelling using 51Cr is therefore given by the following equation: 

        elLCrL
vRL

tttttt
tNtN 2/12/1 //

2


  

Equation 3.5: Random labelling corrected for vesiculation, decay and elution. 

where tL is the time point of labelling with t ≥ tL, NRL(t) is the total number 

of labelled cells at time t after loss due to vesiculation, decay and elution. 
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3.4.3. Simulation of cohort labelling studies with reuse of the label based on 

the example of heavy nitrogen 

Cohort labelling methods are subject to two major disadvantages in 

addition to the loss of label due to vesiculation of Hb: Firstly, the label is 

incorporated into newly produced RBCs over a prolonged time, resulting in 

labelled RBCs that do not have exactly the same age, and secondly, a possible 

reuse of the label can occur after the breakdown of initially labelled cells or 

from other sources where the label is incorporated due to a lack of selectivity 

for RBCs. 59Fe for example is extensively reused after the breakdown of initially 

labelled cells [53]. Glycine tagged with 15N is taken orally over several days and 

incorporated mainly into the protoporphyrin part of Hb during the production 

of RBCs in the bone marrow. This production of labelled RBCs occurs over an 

even longer period of time, strongly suggesting the presence of a glycine pool 

in the bone marrow [38]. Shemin and Rittenberg conducted a cohort labelling 

study, where the tagged glycine was given orally over three days [54]. This 

resulted in an increasing amount of label in the circulation for more than 20 

days before an apparent steady state was reached. Additionally, there seems to 

be some degree of reuse of the label present as well [36]. See for instance the 

disappearance curve of label observed by Shemin and Rittenberg which does 

not return to zero even after more than 200 days and appears to asymptote to 

about 20% of the maximum amount of label that was present (see Figure 2.6 in 

Section 2.6.1 of Chapter 2) [54].  

The simulation of a cohort labelling method with reuse was based on the 

data presented by Shemin and Rittenberg [54], assuming a prolonged but 

constant production of labelled RBCs over 25 days. Linear vesiculation (as per 

Equation 3.4) of Hb together with the incorporated label and a constant reuse of 

20% of the released label from RBCs broken down on the previous day were 

chosen to provide the best description of their data.  

The total number of labelled cells at time t (NCL(t)) for a cohort labelling 

method with reuse and vesiculation is given by: 
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Equation 3.6: Cohort labelling with vesiculation and reuse of the label. 

where lossb is the loss of label between day b-1 and day b, rf is the fraction 

of lost label that is reused on the next day (reuse fraction), reuseb is the actual 

number of reused label on day b, and  bk p
*  is the apparent daily production 

rate including reuse. Nv, kp(b), S(), kv, and v are defined as previously. 

Table 3.2 gives an overview of all fixed parameter values used in these 

simulations. The MATLAB code for the proposed RBC lifespan model and its 

modifications for the different labelling methods is given in Appendix A.3.3. 

Table 3.2: Fixed parameter values used in simulations. 

Parameter Values Units Description 

Cohort labelling 

v 

 

1 
2 

- 
- 

linear vesiculation 
increasing vesiculation 

kv 

 

 

 

1.74 x 10-3 

 

1.51 x 10-5 

 

days-1 

 

days-2 

 

correction factor for linear vesiculation 
(v = 1) 
correction factor for increasing 
vesiculation (v = 2) 

rf 

 

0.1 
0.2 

- reuse factor 

Random labelling 

t1/2Cr 27.7025 days half-life of 51Cr due to radioactive decay 

t1/2el 70 days elution half-life of 51Cr 
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3.4.4. Local parameter identifiability for ideal cohort and random labelling 

studies 

To disentangle structural (or a priori) model identifiability from 

performance issues that might arise when applying a model to data (i.e. 

deterministic or a posteriori identifiability issues), structural local identifiability 

of the parameters in this model were determined informally based on ideal 

cohort and ideal random labelling experiments by applying the theory of 

design of experiments [29]. In this method the Fisher Information matrix was 

constructed according to Equation 1.32 in the Introduction to this thesis, and it 

was assessed whether the matrix was positive definite for a given fixed design 

for a single individual, indicating local identifiability (i.e. all parameters in the 

model are in theory identifiable).  

The maximum units of label per ml of blood were set to be 400 for all 

simulations by choosing the daily constant production of RBCs (parameter kp) 

accordingly. This corresponds to the maximum initial counts per minute (cpm) 

per ml blood found in a typical in vivo RBC survival study using 51Cr. 

Measurement noise was determined based on in vitro experiments 

(unpublished data): The background count was 10 cpm with a variance of 1.73 

cpm2 for the additive error (2add), and a coefficient of variation (CVprop) of 

2.32% was determined for the proportional error. Both were included in the 

simulations as combined error model. Based on the 51Cr background count a 

limit of detection of 5 cpm per sample analysed was calculated according to 

Currie [141], assuming 100% counting efficiency of the sample. Given a 

potential blood sample of 6 ml, the overall limit of detection would be 0.8 

cpm/ml. For comparison of cohort labelling and random labelling methods, 

the maximum units of label/ml blood and the measurement noise were 

assumed to be the same for all labelling methods and were determined based 

on 51Cr. 
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3.4.5. Optimised designs for parameter estimation 

A hypothetical study with 100 healthy individuals was considered, where 

any set of blood samples was assumed to be exchangeable between the 

individuals. Blood sampling times were optimised based on the theory of 

design of experiments in order to obtain the maximum information on the 

parameter values in the model from these samples [29]. To account for 

uncertainty in the parameter values, a robust D-optimal design criterion 

(HClnD) was applied as introduced in the Introduction of this thesis (Section 

1.1.5.1.2) [33]. The lower and upper point estimates were chosen to be 

symmetric around the nominal parameter values determined in the previous 

chapter and are given in Table 3.1. The median lifespan of RBCs based on 26 = 

64 possible combinations of these upper and lower bounds is between 100 and 

120 days (a list of the combinations is given in Appendix A.3.4). As before, the 

exchange algorithm (Appendix A.2.3) was used to maximise the optimal design 

criterion. The performance of an optimised design was then assessed based on 

the asymptotic lower bound of the percentage standard errors (%SE) of the 

parameter estimates.  

100 data sets were simulated under the optimised design for the ideal 

labelling methods and the parameter values were re-estimated for these 

simulated data sets. A combined error model (additive and proportional) was 

considered, with three different error levels for these simulations: 1) the error 

used for the optimisation of the design (CVprop = 2.32%, 2add = 1.732 cmp2), 2) 

CVprop = 5%, 2add = 3.5 cmp2, and 3) CVprop = 10%, 2add = 7 cmp2. The typical 

assay error levels for these type of experiments have a %CVprop in the order of 

<5% [142-144]. A local search algorithm applying the simplex method was used 

for parameter estimation. The algorithm is based on the built-in MATLAB 

function fminsearch but had been modified to allow for boundary conditions 

(fminsearchbnd, available online via file exchange at: 

http://www.mathworks.com/matlabcentral/fileexchange/8277, accessed on 

12.10.2010). 

http://www.mathworks.com/matlabcentral/fileexchange/8277
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In addition to the ideal labelling methods, two different labelling 

scenarios were considered for the optimisation of blood sampling times in a 

hypothetical in vivo study: 1) random labelling with 51Cr and 2) cohort labelling 

with 15N. For the random labelling study, it was furthermore investigated 

whether a superior (hypothetical) label that does not elute or decay appreciably 

during the time course of the experiment would improve the precision of the 

parameter estimates. The cohort labelling method was initially based on the 

previously described simulation scenario (constant incorporation over 25 days 

and a fixed reuse fraction of 20% of lost label). Furthermore, the influence of a 

shorter (ten days) or longer (50 days) incorporation of label, as well as a smaller 

fraction of reuse (10% fixed) on the precision of the parameter estimates was 

investigated. Finally, it was determined whether the fraction of reuse can be 

estimated as well, and how well a design would perform that was determined 

under the assumption of the wrong fraction of reuse.  

3.5. Results 

3.5.1. RBC survival model 

Figure 3.3 shows the disappearance of an ideal cohort label and an ideal 

random label as predicted by the survival model.  

In the case of an ideal cohort label (Figure 3.3A) all labelled RBCs are 

produced on the first day. Immediately afterwards, a sharp drop in the 

disappearance curve of the label is observed. This drop of about 5% results 

from the early destruction of unviable RBCs shortly after their release from the 

bone marrow. Subsequently, labelled RBCs are removed due to random 

destruction, delayed failure and senescence, resulting in an s-shaped 

disappearance curve. To simulate an ideal random labelling method, constant 

production of RBCs was assumed to occur over 500 days. This ensures steady 

state in the total number of RBCs as 500 days is more than double the survival 

time of the longest lived RBCs in the cohort labelling simulation 

(approximately 200 days). The disappearance of the cells after stopping the 

production at day 500, which is assumed to be equal to labelling all cells 
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present at this time point irrespectively of their age, is shown in Figure 3.3B. 

Instead of the s-shaped pattern observed for the simulation of a cohort labelling 

method, ideal random labelling results in an apparent linear disappearance 

with tailing at the end. 

 

Figure 3.3: Disappearance curves predicted for an ideal cohort label (A) and an ideal 

random label (B). 

3.5.2. Simulation of random labelling studies using radioactive chromium 

The influence of all three mechanisms of loss of 51Cr during the circulation 

was investigated individually. The resulting disappearance of label is 

compared with the disappearance of an ideal label in Figure 3.4. 
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First, the loss of Hb together with bound label due to vesiculation was 

incorporated into the model according to Equation 3.4. Figure 3.4A shows the 

influence of linear vesiculation; whereas in Figure 3.4B increasing vesiculation 

with cell age was assumed. Slight differences in the two types of vesiculation 

are observed after approximately day 75, where the disappearance curve with 

an increasing vesiculation rate over cell age remains depressed below the 

disappearance curve of an ideal label for a longer period. Due to this slight 

deviation, further simulations were focused solely on linear vesiculation. 

Figure 3.4C compares the disappearance of the radioactive label with a decay 

half-life of 27.7025 days with the disappearance of an ideal label. Instead of the 

linear disappearance curve observed with an ideal label, the decay results in an 

exponentially decreasing disappearance curve. Finally, the influence of the 

dissociation of the chromium-haemoglobin complex and the subsequent loss of 

trivalent chromium from the cells is shown in Figure 3.4D, where a dissociation 

half-life of 70 days was assumed according to literature for the rate limiting 

step of the combined mechanism termed elution [57,140]. Elution is similar to 

radioactive decay, as both processes are exponential. Consequently, the 

influence of elution also results in an exponentially decreasing disappearance 

curve. However, the decline of the disappearance curve is slower due to the 

apparent longer half-life of elution compared to the half-life of the decay.  

The combined loss of 51Cr due to all three mechanisms is illustrated in 

Figure 3.5 in comparison to the disappearance of an ideal label.  

 
 

following page: 

Figure 3.4: Influence of the individual mechanisms of loss on the disappearance of 

radioactive chromium as random label. Blue: disappearance of an ideal label; red: 

disappearance of the label with the corresponding mechanism of loss: A linear 

vesiculation of haemoglobin, B increasing vesiculation of haemoglobin, C radioactive 

decay (half-life 27.7025 days), D elution (half-life 70 days). 
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Figure 3.5: Combined mechanisms of loss of radioactive chromium compared to an 

ideal random labelling method (blue). Green: linear vesiculation of haemoglobin, 

brown: linear vesiculation and decay, red: linear vesiculation, decay and elution. 

It is expected in clinical RBC survival studies using 51Cr as the random 

labelling method, that one would observe the combined, very fast 

exponentially declining disappearance curve instead of the linear 

disappearance of an ideal label. Correcting this curve for the decay of the label, 

as it is commonly done in clinical practice, results in an apparent half-life of 

RBCs in the circulation of 32 days in this simulation. Note, although reported in 

terms of half-life, which implies a random destruction process, the principle 

natural mechanism of RBC destruction is in general believed to be senescence 

and hence not a random process. This illustrates the oversimplification caused 

by application of empirical corrections for decay and elution.  
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3.5.3. Simulation of cohort labelling studies with reuse of the label based on 

the example of heavy nitrogen 

Cohort labelling was simulated in Figure 3.6 on the basis of survival 

studies using 15N with a prolonged constant incorporation of the label over 25 

days and a constant reuse fraction of 20% of label lost on the previous day. In 

addition linear loss due to vesiculation of Hb from the intact viable RBC was 

included.  

 

Figure 3.6: Disappearance of a cohort label with prolonged incorporation over 25 days 

and constant reuse of 20% without (blue) and with (red) linear vesiculation of 

haemoglobin. 

The amount of label in the circulation is rising as long as production of 

labelled RBCs occurs, and the subsequent disappearance curve shows a similar 

s-shaped pattern as the disappearance of an ideal cohort label. However, in 

contrast to the ideal cohort labelling method, an initial drop resulting from the 

early death of unviable RBCs is not obvious due to the prolonged incorporation 

of label. Furthermore, approximately 12% of the maximum amount of label 

present during the entire simulation is still present in the circulation after 200 

days.  
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3.5.4. Local parameter identifiability and optimised designs for ideal labels 

The Fisher Information matrix was found to be positive definite for both 

the ideal cohort and ideal random labelling studies, indicating that the model is 

locally identifiable for a given finite design. The results for the optimal blood 

sampling times after labelling on day 0 and %SE of the parameter estimates 

calculated for the mean parameter values of the prior parameter distribution 

are shown in Table 3.3.  

Ideal random labelling requires six blood samples between day 1 and day 

140 (Table 3.3a). The %SE for five of the parameters are approximately 20% or 

less, while parameter r2 controlling the initial destruction of unviable RBCs was 

associated with the highest %SE of about 130%. Nevertheless, all parameter 

values could in theory be estimated from such a study. In comparison, ideal 

cohort labelling is associated with an improved precision, where the blood 

samples are to be taken at slightly later time points (Table 3.3b). The %SE 

values for all but one parameter are 5% and less. Again, the initial destruction 

of unviable RBCs described by parameter r2 is associated with a higher %SE of 

about 23%. 

 



Chapter 3: Evaluation of red blood cell labelling methods 

 116 

 

 

 

Table 3.3: Sampling times and corresponding percentage standard errors (%SE) for the parameter estimates. 

Simulation Optimal sampling times (days) 
%SE parameter 

r1 r2 s1 s2 c m reuse 

Ideal labelling methods               

a) Random labelling 1 46 68 83 113 140  11.4 132.8 2.6 3.8 21.1 3.8 - 

b) Cohort labelling 5 60 72 84 129 153  2.3 22.7 0.6 0.9 5.1 0.9 - 

Random labelling               

c) Radioactive chromium 1 27 51 67 82 107  54.3 674.9 67.8 67.0 118.9 19.3 - 

d) Fixed initial destruction 1 27 54 77 78 107  42.5 fixed 55.4 51.0 39.4 4.2 - 

e) No elution of the label 1 29 54 69 85 118  31.2 362.5 24.8 27.3 74.2 11.2 - 

f) No decay of the label 1 39 64 77 97 130  20.5 195.9 8.4 11.0 40.2 6.0 - 
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Table 3.3: continued. 

Simulation Optimal sampling times (days) 
%SE parameter 

r1 r2 s1 s2 c m reuse 

Cohort labelling               

g) 
Incorporation over 10 

days and 20% reuse 
11 63 76 89 129 156  3.5 34.4 1.1 1.5 7.4 1.3 fixed 

h) 
Incorporation over 25 

days and 10% reuse 
15 68 86 104 140 167  4.2 44.8 1.0 1.5 8.2 1.5 fixed 

i) 
Incorporation over 25 

days and 20% reuse 
15 69 86 104 139 166  4.9 51.9 1.3 1.8 9.5 1.7 fixed 

j) 
Incorporation over 50 

days and 20% reuse 
13 65 105 126 156 188  11.3 107.3 2.7 3.7 17.8 3.0 fixed 

k) 
Incorporation over 25 

days and 10% reuse 
15 68 86 104 140 166 201 4.2 44.8 1.1 1.5 8.2 1.5 0.7 

l) 
Incorporation over 25 

days and 20% reuse 
15 68 86 103 139 166 204 5.1 50.9 1.4 1.9 9.5 1.7 0.5 
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The results of the simulation-estimation analysis (Table 3.4) for ideal 

cohort labelling confirm the findings of the design analysis. The empirical %SE 

obtained at the same error level as used for the optimal design are in the same 

magnitude as calculated based on the Fisher Information matrix, and therefore 

based on simulation-estimation all parameters are estimable in this model. 

Note, that the %SE based on the optimal design are asymptotic lower 

boundaries, slightly higher values obtained based on simulation-estimation are 

therefore anticipated. As expected, increasing the error level results in an 

increase in the empirical %SE of all parameters. In contrast, simulation-

estimation of ideal random labelling resulted in higher empirical %SE than 

calculated based on the optimal design. Nonetheless, under the experimentally 

derived error level, estimation of all parameters would be possible. Higher 

error levels are accompanied by a decrease in the success rate of the estimation 

procedure and a loss of information on all parameter values.  
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Table 3.4: Simulation-estimation results for ideal labelling methods in comparison to the information theoretic values. 

Simulation & Error levels 
%SE parameter estimates Success a 

r1 r2 s1 s2 c m  

Ideal cohort labelling         

calculated based on MF b 2.3 22.7 0.6 0.9 5.1 0.9 - 

2.32% CVprop 2add = 1.73 cpm2 3.4 42.7 1.2 1.5 5.9 1.1 97% 

5% CVprop 2add = 3.5 cpm2 

6. 

 

8 

152.2 1.8 2.2 9.6 1.8 89% 

10% CVprop 2add = 7 cpm2 11.4 240.7 2.1 2.6 10.7 2.0 96% 

Ideal random labelling        

calculated based on MF b 11.4 132.8 2.6 3.8 21.1 3.8 - 

2.32% CVprop 2add = 1.73 cpm2 58.6 123.9 28.0 34.5 38.8 16.5 95% 

5% CVprop 2add = 3.5 cpm2 96.4 318.6 16.3 20.8 38.7 14.5 60% 

10% CVprop 2add = 7 cpm2 207.2 111.0 117.1 135.9 60.6 18.7 58% 

a % runs out of 100 that resulted in parameter estimates that are within  100 fold of the nominal values  
b MF = Fisher Information matrix, calculations based on a combined error model with CVprop = 2.32% and 

2
add = 1.73 cpm

2 
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3.5.5. Optimised designs for non-ideal labels 

The robust D-optimal design was located for random labelling with 51Cr 

including the various loss mechanisms of the label from RBCs. The results are 

shown in Table 3.3c. The optimal sampling times are shifted to earlier time 

points compared to the ideal random labelling method. The corresponding 

%SE of the parameter estimates are considerably higher than for the ideal 

labelling method. Four of the parameters show %SE values of between 55% and 

120%, while one parameter was well estimated with a %SE of approximately 

20%. However, parameter r2 controlling the initial destruction of unviable RBCs 

was poorly estimated with a %SE of >600%. To overcome this problem r2 was 

fixed and the %SE of the estimates for the remaining five parameters were 

determined together with the new set of optimal blood sampling times (Table 

3.3d). The optimal sampling times were minimally different. The 

corresponding %SE for the parameter estimates are 55% and less for all 

remaining parameters. However, as these parameter estimates are still 

associated with a low precision in comparison to an ideal random label, it was 

investigated whether the elution component or the decay of the radioactive 

label plays a greater role in this loss of precision. First, optimal blood sampling 

times and the corresponding %SE were determined for a radioactive random 

label analogue to 51Cr but without loss due to elution. The results are given in 

Table 3.3e. The optimal blood sampling times are located on similar days as for 

51Cr. Precision is particularly improved for the two parameters controlling the 

senescence of RBCs (s1 and s2). The %SE for both is reduced from >60% to <30% 

for a label without elution. However, parameter r2 remains poorly estimated 

from a study using such a label as its %SE is >300%. Second, an analogue to 

51Cr that had a substantially longer half-life of decay and principally only 

shows loss due to elution and vesiculation was considered. In this case, the 

optimal blood sampling times are shifted to later days (Table 3.3f). They are 

now located on time points up to day 130 and are closer to the optimal 

sampling times for an ideal random labelling method. Correspondingly, the 

precision of the parameter estimates has again improved. The %SE for all 
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parameters but r2 are <50%, whereas the error for r2 has decreased to 

approximately 200%. Furthermore, a half-life of 360 days was found to be 

adequate for the hypothetical radioactive label to result in %SE of a similar 

magnitude as would be expected for a label without decay. 

The robust D-optimal design was also located for a hypothetical cohort 

labelling method that shows a constant zero-order rate prolonged 

incorporation and reuse of label from previously labelled RBCs. The results for 

the optimal blood sampling times and %SE are given in Table 3.3g-l. For the 

first setup a prolonged incorporation over 25 days and a reuse fraction of 20% 

was assumed on the basis of data from Shemin and Rittenberg [54]. Blood 

samples are taken over a longer period of time ranging up to 5 months (Table 

3.3i). The corresponding %SE for all parameters but r2 are <10%, indicating 

very high precision. Parameter r2 is associated with %SE of approximately 50%. 

By assuming a shorter period of incorporation of just ten days, the optimal 

sampling times are shifted to slightly lower time points (Table 3.3g). This 

improves the precision of the parameter estimates even further, with r2 having 

now a %SE of about 35%. In contrast, a longer period of incorporation (50 days) 

reduces the precision of all parameter estimates slightly (Table 3.3j). The %SE 

are approximately doubled in comparison to incorporation over 25 days, while 

the optimal blood sampling times are spread over a longer period of time 

where the last sample should be taken on day 188. Furthermore, decreasing the 

constant reuse fraction to 10% with a prolonged incorporation over 25 days has 

only little influence on the optimal design and the corresponding %SE (Table 

3.3h) in comparison to the corresponding design for 20% reuse and 25 days of 

incorporation. Correspondingly, the D-efficiencies for the design evaluated at 

20% reuse but applied for a reuse fraction of 10% and vice versa were >99.9%. 

Finally, an optimal design was determined where the reuse fraction was to be 

estimated as an additional parameter. Two scenarios with different reuse 

fractions (again 10 and 20%, respectively) were evaluated, while the 

incorporation of label was assumed to occur over 25 days (Table 3.3k and l). 

Estimating this additional parameter requires an additional time point. In both 
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cases, this time point is located at around day 200, while the remaining six 

optimal blood sampling times are almost unchanged when compared with the 

corresponding designs with a fixed reuse fraction. Correspondingly, there is 

only a minimal loss in the high precision for the estimates of the parameters 

controlling RBC survival, while the %SE for the estimation of the reuse fraction 

is <1%, indicating an acceptably precise design. Again, the D-efficiencies were 

>99.9% when the design was optimised assuming a reuse fraction of 10% but 

applied to a setting with 20% reuse and vice versa. 

3.6. Discussion 

3.6.1. Enhancement of the proposed RBC survival model 

Previously, an individual lifespan was randomly assigned to each RBC 

produced during the simulation [82]. This procedure was described in the 

previous chapter and the Introduction to this thesis (Section 2.4.2.1 & Section 

1.2.4.3.2). However, difficulties arose from this procedure when attempting to 

mathematically manipulate the function. The model was modified here to 

eliminate the need for random sampling by locating the corresponding survival 

function to simulate a single or multiple cohorts of RBCs.  

3.6.2. Simulation of random labelling studies using radioactive chromium 

The different mechanisms of loss of 51Cr during the circulation of RBCs 

were incorporated into the final model. Loss due to vesiculation of Hb can be 

incorporated as a constant process or increasing in an age-dependent manner. 

However, loss due to an age-dependent process was minimally different 

compared with the linear loss and vesiculation only plays a minor role overall. 

As literature conflicts on vesiculation rate [68,134,145,146], a constant loss was 

assumed throughout this work.  

Elution of 51Cr is mostly reported to occur at about 1% per day in healthy 

individuals [57,61,140]. However, it seems to be a variable process dependent 

on the labelling process [147] and the disease state [67]. Furthermore, it might 

vary between individuals or within an individual in different RBC 
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subpopulations. It would therefore be highly desirable to estimate elution as an 

additional parameter in the model. Yet, as elution is described as a first-order 

loss, equivalent to a random process, it is not possible to distinguish elution 

from the natural random destruction provided by the estimate of the parameter 

c. Thus, elution has either to be known from a priori sources (e.g. the 

recommendations of The International Committee on Standardization in 

Hematology [66]), or needs to be determined independently (e.g. from in vitro 

experiments) and applied as a fixed parameter in the model to allow for 

unbiased estimation of c as the only unknown variable resulting in exponential 

loss. Note that the half-life of decay of 51Cr to stable vanadium is known and 

hence can be included as an exact quantity in the equation.  

In clinical practice, it is common to correct the observed disappearance of 

the label for the radioactive decay of the label only (ignoring any other 

processes of loss, e.g. elution), and simply report an apparent half-life of 51Cr in 

the circulation instead of further calculating the mean RBC lifespan. Applying 

this concept to the simulation of random labelling using 51Cr presented here 

results in an apparent half-life of 32 days after correction for radioactive decay 

only, which is within the normal range reported for healthy individuals (25 – 40 

days) [35]. This suggests that although the model was not built from data but 

developed in a theoretical framework based on plausible processes of RBC 

destruction in the body, it is in agreement with the current survival studies of 

RBCs in healthy individuals. 

3.6.3. Simulation of cohort labelling studies with reuse of the label based on 

the example of heavy nitrogen 

The settings used for the simulation of cohort labelling with reuse of the 

label are based on data published by Shemin and Rittenberg [54]. A constant 

production of labelled RBCs over 25 days provided an acceptable description 

for their data. Although this is a simplification of the process it appears that all 

designs presented here are fairly robust to this choice, and it is unlikely that a 
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more complex description of the incorporation phase would significantly 

change the optimal designs and the precision of the parameter estimation.  

The value of 20% reuse was chosen based on an empirical estimate from 

Shemin and Rittenberg’s data [54], which is in agreement with findings of 

Amatuzio and Evans [148]. Two caveats with respect to the interpretation of 

reuse arise. Firstly, the protoporphyrin part of Hb together with the bound 

label is mainly excreted from the body in form of bilirubin. Therefore, it is 

unlikely that the reused label originates solely from the breakdown of 

previously labelled RBCs. Secondly, glycine is not only incorporated into the 

heme part of Hb, but is also utilized as amino acid during the formation of 

many other proteins, including the globin chains of Hb itself. Therefore, a reuse 

from these alternative sources would seem more likely [36,38]. Additionally, 

the model accounts for an immediate reuse of the label released from initially 

labelled RBCs on the very next day. Yet, Hb is produced over several days 

during the maturation of RBC precursors in the bone marrow resulting in a 

delay of the appearance of the newly labelled RBCs in the circulation. 

However, only the extent of reuse is relevant in the model as neither the source 

of reused label nor the exact time of delay is identifiable, and reuse is assumed 

to be continuous from the first day. Therefore, is not expected that these 

simplifying assumptions influence the inferences from the results presented 

here. 

3.6.4. Local parameter identifiability & optimised design for parameter 

estimation 

Based on the theory of optimal design, it was shown that all parameters 

are locally identifiable under ideal labelling conditions. The precision of the 

parameter estimates is slightly lower for an ideal random labelling method. 

Nevertheless, it would be possible to estimate the parameter values from such a 

study, as only the initial destruction of unviable RBCs is associated with a 

slightly higher error of 130%, which is amenable to a more intensive design 

strategy. Yet, it has to be noted, that any deviation from the optimised 
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sampling schedule in clinical practice would result in a design which may lead 

to a reduction in the precision of the parameter estimates. The optimal design 

results have been confirmed based on simulation-estimation analysis at the 

same error level as used for the information theoretic approach. Unfortunately, 

ideal labelling methods are not available, as all labels developed so far are 

associated with significant flaws. Furthermore, higher error levels, in excess of 

those that would be expected experimentally, result in a loss of information on 

the parameter estimates even under ideal labelling conditions. This was 

particularly seen for the random labelling method during simulation-

estimation and further highlights the difficulties associated with this particular 

labelling method. Note, however, that the success rate and the precision of the 

parameter estimates could be increased by using a global search algorithm such 

as simulated annealing that is less likely to converge to a local minimum than 

the simplex method used here. This strategy was not followed in this work due 

to the high computational burden associated with global search algorithms.  

No between subject random effects are considered in the design. This 

assumption implies that the variability in the lifespan between healthy 

individuals is less than the variability in the lifespan within an individual and 

hence a model that includes only the fixed effects components is of importance. 

This does not mean however that the variance of the between subject effects 

would be poorly estimated in the current design, but rather that the current 

design does not incorporate these elements. In the absence of empirical data 

that can be used to quantify the sources of variability it is not practical to relax 

this assumption in the current work. However, uncertainty in the parameter 

values used in this work was accounted for. By choosing the variance of the 

parameter distribution accordingly, a median survival of RBCs between 100 

and 120 days was ensured [35,36]. By applying a robust optimality criterion it 

was ensured that the designs reported here are optimised over a range of 

potential parameter values and, therefore, should be applicable for healthy 

individuals. The study design incorporated 100 individuals with six samples 

per subject. 
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3.6.5. Comparison of the results for the different labelling methods 

The results for the optimal design showed that all parameters but the 

initial destruction of unviable RBCs (parameter r2) would be estimable from the 

hypothesised study in the case of labelling with 51Cr even in the presence of the 

associated label flaws. In theory, this problem could be overcome by using a 

different random label with a longer half-life for the radioactive decay of at 

least 360 days. The influence of elution is relatively less than that of radioactive 

decay. However, this process cannot be distinguished from natural random 

destruction without either strong a priori information or data from additional 

studies. This problem limits the precision of estimating the lifespan of RBCs by 

using 51Cr as a random labelling method, and provides, in agreement with 

Cavill [129], a clear argument against the common use of the 51Cr method. The 

51Cr method can only provide a semi-quantitative measure of RBC survival, but 

cannot be used to determine the actual lifespan of RBCs due to the significant 

flaws inherent in this method. 

It needs to be noted, that although this work was focussed on 15N as an 

example for cohort labelling and 51Cr as the most commonly used random 

labelling method, more recently random labelling of RBCs using biotin has 

been introduced [149,150]. This label is a promising alternative to 51Cr, as it is 

not radioactive, has an apparent small loss due to elution, and is unaffected by 

vesiculation since the detection method using flow-cytometric analysis only 

counts cells as either positive or negative. Therefore, this technique comes close 

to being an ideal random labelling method in the sense of the work presented 

here. Unfortunately, the biotin label is not yet widely available in the clinical 

setting and requires more manipulation of the cells during the labelling 

process, potentially affecting the stability of the labelled cells [36]. Further work 

is therefore required to ultimately decide on the quality of this promising label 

to determine RBC survival. 

Nevertheless, in contrast to random labelling, cohort labelling with reuse 

and vesiculation provides more information on the underlying parameter 

values than even an ideal random labelling method. Unfortunately, 15N has not 
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been used and investigated as extensively as 51Cr. Hence, there is limited 

information available on its behaviour in the body in order to provide a more 

detailed description of its flaws. Yet, the results presented here indicate that 

cohort labelling provides more information on the survival of RBCs even when 

associated with certain disadvantages like reuse and prolonged incorporation.  

3.7. Conclusion 

In summary, RBC lifespan estimates obtained by using the currently 

available labelling methods have to be interpreted cautiously, and the flaws 

associated with these methods have to be accounted for if one aims to predict 

for example the effect of erythropoietin treatment on haematocrit in patients 

with anaemia. Model based techniques that are sufficiently flexible to account 

for both the limitations in the methodology as well as the likely causes for RBC 

destruction are recommended to be used.  

This work has shown that the flaws associated with the most commonly 

used random labelling method, 51Cr, are more substantial than those associated 

with cohort labelling methods. Nevertheless, an adequately designed 

experiment will provide informative details on RBC lifespan and associated 

destruction mechanisms when considered in a model based analysis 

framework.  
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4.1. Synopsis of the Chapter 

In this chapter, the proposed red blood cell (RBCs) survival model is 

applied to clinical data obtained using the most commonly used labelling 

technique, labelling with radioactive chromium (51Cr). RBC survival is assessed 

in diabetic patients with chronic kidney disease (CKD) as well as age and sex 

matched healthy controls. 

4.2. Introduction 

4.2.1. Anaemia of chronic kidney disease 

Anaemia of CKD is a common complication in patients with renal 

impairment, especially in end-stage renal failure [151,152]. It results from an 

insufficient production of erythropoietin (EPO) by the damaged kidneys, 

reduced bone marrow responsiveness to EPO and reduced capacity to produce 

RBCs, as well as a decreased survival of RBCs in the circulation [43,44,153,154]. 

Extracorpuscular factors are believed to play a major role in the decreased RBC 

survival [154,155], but it remains unclear whether this decrease results from 

increased random destruction or premature senescence of the cells. 

Additionally, mechanical damage during haemodialysis might affect RBC 

survival, while an effect of treatment with human recombinant erythropoietin 

(rHuEPO) on RBC lifespan is disputed [156-159]. 

4.2.2. Estimation of RBC survival 

In general the survival of RBCs is assessed using labelling methods, and 

age-independent, random labelling of the cells with 51Cr is most commonly 

used [57,66]. Beside a short half-life of 51Cr (t1/2Cr = 27.7025 days) due to the 

radioactive decay [138], this method suffers from nonspecific loss of label from 

viable cells due to dissociation of the chromium-haemoglobin complex with 

subsequent loss of chromium (termed “elution”) as well as vesiculation of 

haemoglobin (Hb) together with the bound label [67,68,160]. It is common 

practice to report an apparent half-life (t1/2app) of RBCs based on this labelling 
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method after correction for the decay only. If we assume an age-independent 

random destruction mechanism of cells as the sole method of destruction, then 

the RBC half-life can be converted into an apparent mean RBC lifespan (LSapp) 

based on LSapp = 1.44t1/2app [161]. It is important to note that this conversion 

ignores age-dependent death due to senescence and also loss of structurally 

deformed RBCs due to other mechanisms. Therefore this approach is likely to 

provide a limited understanding of the actual physiology of RBC destruction.  

Similarly, alternative mathematical descriptions of RBC survival mostly 

assume that cell death occurs due to a single mechanism only, either random 

destruction or senescence [35,66,72,76,162,163]. Only a few models have been 

proposed that combine both mechanisms [35,66,80]. 

4.2.3. Newly proposed RBC survival model 

In the previous two chapters, a statistical RBC survival model has been 

developed that, in contrast to previously proposed models, accounts for several 

physiologically plausible mechanisms of RBC destruction (Chapter 2) [82], and 

also for flaws associated with commonly used RBC labelling methods such as 

51Cr (Chapter 3) [164]. The destruction mechanisms in the model include 

senescence and random destruction, as well as cell death due to early or 

delayed failure, which are described by distinct parameters. These parameters 

give rise to a very flexible probability density function describing the change in 

the instantaneous probability of death over time (equivalent to a lifespan 

distribution). Assessing the shape of this function would allow for deeper 

insight into the mechanisms of destruction, for example to determine the extent 

of a constant risk of death due to random destruction or the presence of 

significant initial failure as described in Chapter 2 (Section 2.8).  
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4.3. Objectives 

The primary aim of this chapter was to apply the previously developed 

model to clinical data on RBC survival. The secondary aim was to investigate 

whether the data supports an increased random destruction or an altered 

senescence as the primary mechanism underlying the decreased RBC survival 

in patients with CKD undergoing haemodialysis. 

4.4. Materials and Methods 

4.4.1. The data 

RBC survival data has been described previously by Vos et al. [165]. 

Briefly, data were available for analysis from 14 patients with end-stage renal 

failure undergoing haemodialysis (CKD group) and 14 age and sex matched 

controls. These data were collected in an observational study at the Southern 

District Health Board Dialysis Unit, Dunedin, New Zealand (Australian New 

Zealand Clinical Trials Registry: ACTRN12610000145000) [165]. Table 4.1 

provides an overview of the demographics in both groups. Written informed 

consent was obtained from all participants.  

Table 4.1: Demographics for both study groups (mean  SD) [165]. 

 CKD group (n = 14) Controls (n = 14) 

Age (years) 57.2  8.6 57.3  7.9 

Sex (M:F) 8:6 8:6 

Haemoglobin (g/L)* 122  12 143  10 

* p < 0.001 

 

All but two haemodialysis patients were anaemic with Hb concentrations 

between 110 and 130 g/L, and all were receiving either continuous treatment 

with rHuEPO or iron supplementation. Dialysis conditions were not altered 

during the study.  

Labelling of RBCs was conducted according to the recommendations of 

the International Committee of Standardization in Hematology using 51Cr 
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(Method C) [66]. This procedure involves ex vivo incubation of the cellular 

components of an autologous blood sample with radioactive chromate, which 

mostly binds to Hb inside the RBCs. A suspension of the labelled cells is 

reinjected into the patient’s circulation after reduction of excess chromate to 

trivalent chromium using ascorbic acid. The latter form of chromium is no long 

available to label Hb. 

In the study by Vos et al., ten to 13 blood samples were taken from each 

individual until 52 days after labelling and analyzed for remaining 

radioactivity [165]. Figure 4.1 shows the disappearance of the label from the 

circulation in both groups. The data is expressed as %label normalised to the 

amount of label present at day 1 after labelling to account for the washout 

phase of unbound 51Cr during the first day.  

 

Figure 4.1: Disappearance of 51Cr from the circulation over time in CKD patients () 

and healthy controls (). 

4.4.2. The model 

The model used for data analysis has been described in detail in the 

previous chapters. To repeat briefly, the survival of a cohort of RBCs born at 

the same time (t = 0) is given by: 
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Equation 4.1: Survival function for a cohort of RBCs born on day t = 0. 

Parameters in Equation 4.1 and the corresponding RBC destruction 

mechanisms controlled by these parameters are explained in Table 4.2. This 

table also provides their default values based on a median RBC survival of 115 

days as they were derived in Chapter 2 (Section 2.4.2.2) [82].  

Table 4.2: Mechanism of destruction and parameters controlling these. 

Parameter Destruction mechanism Default value [82] 

s1 (days-1) 
Senescence (density of main maximum 

of lifespan distribution) 
0.0241 

s2 (days) 
Senescence (location of main maximum 

of lifespan distribution) 
440.78 

c (days-1) Constant random destruction 0.0024 

r1 (days-1) 
Reduced lifespan due to delayed 

failure 
0.0140 

r2 (-) Reduced lifespan due to initial failure 8.9681 

m (-) Mixing parameter* 0.8941 

* Probability of the senescence and random destruction component given by m, while early 
and delayed failure have a probability of 1-m. 

 

Based on Equation 4.1 the apparent mean lifespan L  can be calculated as 

the integral over the survival function S(t) over time: 

 dttSL 




0

 

Equation 4.2: Apparent mean RBC lifespan. 

Flaws of the 51Cr random labelling method used in the study by Vos et al. 

[165] were included in the model as described in Chapter 3 (Section 3.4.2) by 

accounting for radioactive decay (t1/2Cr = 27.7025 days), elution (t1/2el = 70 days) 
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and vesiculation of Hb (20% loss over median RBC survival) according to 

literature values [66,68,138]. Note these values were considered to be fixed 

constants and not vary across cohorts or individuals. The corresponding 

equations are described in the Appendix A.3.2 and Chapter 3 (Section 3.4.2), 

while the following equation is a repetition of Equation 3.5 describing the final 

model for random labelling using 51Cr: 

        el/LCr/L
vRL

t/ttt/tt
tNtN 21212


  

Equation 4.3: RBC survival model accounting for flaws associated with random 

labelling using 51Cr.  

As it was shown in Chapter 3 (Section 3.5.5), full parameter estimation for 

the proposed RBC survival model would be possible in theory from a random 

labelling method; however the nonspecific loss of label is a significant limiting 

factor which compromises the power of the design to provide information on 

all mechanisms of RBC destruction simultaneously. In this chapter a simple 

overlay of the data on the model prior predictions was considered first, 

followed by focusing on the estimation of the parameters of highest clinical 

interest with respect to the available data, e.g. parameter s2 (controlling the 

location of the senescence component) or random destruction (parameter c), 

while the remaining parameters are fixed to their default values.  

This procedure was applied here based on two different approaches: (1) a 

two-stage approach and (2) a full population approach. For both approaches, it 

was assessed whether estimating senescence (Scenario A) or estimating random 

destruction (Scenario B) provided the better fit based on changes in objective 

function value (OFV). Note that this does not exclude a combination of both or 

even multiple contributing mechanisms as possible cause for a decreased RBC 

survival in patients with CKD. However, this could not be assessed in this 

work due to the limitations of the 51Cr labelling method. 

An initial exploratory two-stage approach was conducted to assess 

whether there was a consistent preference towards one of these scenarios 

across individuals within each group. Since it was not possible to estimate both 
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senescence and random destruction simultaneously, it was not possible to 

determine from a population analysis the non-dominant mechanism in the 

population. Furthermore, the apparent mean RBC lifespan L  was calculated 

for both groups (CKD and controls) in each scenario based on the parameter 

estimates using Equation 4.2, and the differences between the groups were 

compared.  

4.4.3. Two-stage approach 

The two-stage approach was conducted in MATLAB (The MathWorks 

Inc., Natick USA). The model was fitted to the data of each individual 

separately using iteratively reweighted least squares (IRWLS) as the objective 

function until convergence of the parameter estimates was obtained (as per 

[166]). The objective function for the ith subject in the kth iteration is given by: 

          12
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
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k
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k
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Equation 4.4: Iteratively reweighted least squares (IRWLS) as objective function in 

the two-stage approach. 

where ni is the total number of observations yij in individual i, f() is the 

structural model according to Equation 4.3, xij are the independent variables of 

individual i,  k
iθ̂  are the individual parameter estimates of subject i during 

iteration k, and 
 k
ijw  are the weights for the jth observation in the ith individual 

during iteration k. Starting from ordinary least squares in the first iteration, the 

weights are updated during each subsequent iteration k > 1 based on the 

estimates of the previous iteration k-1: 

















 
1for    ˆ,

1for                            1
2

}1{
}{

kxf

k

w k
ij

k
ij

i
θ

 

Equation 4.5: Weights for the iteratively reweighted least squares. 
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A local search algorithm based on the simplex method and which allows 

for boundary conditions (fminsearchbnd, obtained via file exchange from: 

http://www.mathworks.com/matlabcentral/fileexchange/8277, accessed on 

12.10.2010) was used for minimization in MATLAB to obtain the best 

parameter estimates in the parmeter space  during each iteration: 

     k
iIRWLS

k
i OFVargmin θθ

Θθ

 ˆ



  

Equation 4.6: Objective function minimisation. 

The estimation process was repeated until the absolute difference in the 

parameter estimates for two consecutive iterations was less than 10-6, i.e. 

    61
10θ̂θ̂ 


k

ip
k

ip  for the pth parameter. 

The population mean parameter values ( 2s  and c  for Scenario A and B, 

respectively) were calculated for the CKD group and the controls according to 

Equation 4.7, while the between subject variability (BSV) was calculated based 

on Equation 4.8 for the pth parameter [22]: 
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Equation 4.7: Population mean parameter value. 
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Equation 4.8: Between subject variance. 

where N is the total number of individuals in each group. 

For each individual it was determined which scenario provided the better 

fit (lower OFV), and within each group it was assessed which scenario was 

preferred in the majority of individuals. The apparent mean RBC lifespans for 

both groups calculated according to Equation 4.2 were compared using an 

unpaired t-test with unequal variance for both scenarios. 

  

http://www.mathworks.com/matlabcentral/fileexchange/8277
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4.4.4. Population approach 

The population approach was conducted using the SAEM algorithm in 

MONOLIX 1.1 (this version was easily amendable for the implementation of 

the RBC survival model) [27,167]. MONOLIX maximizes the log likelihood 

(LL) denoted as OFVLL in this chapter. Goodness of fit was determined based 

on the OFVLL, where the better fit is characterized by a higher value. For nested 

models (when appropriate), the likelihood ratio test (LRT) is used as criterion 

with OFV of ≥3.84 being significant for one degree of freedom. 

Additive, proportional and combined error models were tested as 

statistical models for the residual unexplained variability (RUV). 

MONOLIX 1.1 calculates the individual estimate for the pth parameter in 

the base model without covariates according to: 

ipepip
η

θ
ˆ

θ̂   

Equation 4.9: Individual parameter estimate as calculated by MONOLIX 1.1. 

where ipθ̂  is the individual parameter estimate of the ith individual, pθ
ˆ  is 

the population mean estimate and ip is the random effect for the ith individual 

[24].  

Sex and CKD were tested as covariates on the full data set. Age was not 

included in the covariate analysis as there is no a priori evidence from the 

literature that it has an effect on RBC survival and also due to the 

homogeneous selection of both study groups with a narrow age range. In 

MONOLIX 1.1, the effect of a covariate on the individual estimate of 

parameter p in the ith individual is calculated according to: 
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Equation 4.10: Covariate model in MONOLIX 1.1. 

where  is the estimated coefficient of the covariate and covi is an 

indicator variable taking a value of 0 for controls and 1 for CKD patients [24]. 
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Significance is determined based on the Wald test in MONOLIX on the level 

of the parameter estimates themselves, and was confirmed based on the LRT 

with respect to the full model. The Wald test is an approximate local test for 

significance of a parameter estimate based on the assumption of a symmetric 

confidence interval around the estimate, while the LRT is a global test assessing 

the significance of including the additional parameter in the model based on 

the overall goodness of fit without relying on the assumption of symmetry in 

the deviations. Therefore, the LRT is more powerful compared to the Wald test 

and the LRT results were considered to be decisive if both tests resulted in 

different outcomes with respect to the significance of a parameter. In addition, 

visual predictive checks (VPCs) were plotted for model evaluation.  

4.5. Results 

A simple overlay of the data and the model prediction without fitting is 

shown in Figure 4.2. Good agreement between model prior prediction and the 

data was observed. 

 

Figure 4.2: Data ( CKD patients ,  controls) and model prior prediction (—) 

without fitting. 
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4.5.1. Two-stage approach 

Table 4.3 summarizes the results for the two-stage approach estimations.  

Table 4.3: Results for the two-stage approach. 

 
CKD 

group 
Controls p value Description 

Scenario A: Estimating senescence 2s   

2s  (days) 147.38 249.63 0.0005 population mean  

s2 (days2) 2267.97 6527.59  
BSV of population 

mean* 

2sL  (days) 59.3 75.6 0.0002 mean RBC lifespan 

L,s2 (days2) 80.3 120.8  BSV of mean lifespan* 

Scenario B: Estimating random destruction c   

c  (days-1) 0.0169 0.0094 0.0002 population mean  

c (days-2) 2.62 x 10-5 1.33 x 10-5  
BSV of population 

mean* 

cL
 (days) 49.8 69.1 0.0002 mean RBC lifespan 

L,c (days2) 108.1 174.8  BSV of mean lifespan* 

* BSV = between subject variance 

 

Both estimation scenarios resulted in a statistically significant reduction in 

the apparent mean RBC lifespan in the CKD group compared to the controls:   

 L = 16.3 days for estimating senescence (p = 0.0002),  L = 19.3 days for 

estimating random destruction (p = 0.0002). Estimating random destruction 

was preferred over estimating senescence in eleven out of 14 individuals in 

both groups based on the OFV. Individual fits for four representative 

individuals in each group are shown in Figure 4.3. (The individual fits for all 

individuals are shown in Appendix A.4.1) 
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Figure 4.3: Representative individual fits (—) obtained in the two-stage approach for 

estimating senescence (left column) and random destruction (right column) for controls 

(, upper panels) and CKD patients (, lower panels). 

 

4.5.2. Population approach 

In the population approach, a combined error model was found to 

describe RUV best. The MONOLIX estimates for the base model without 

covariates are given in Table 4.4. CKD was found to be a significant covariate 

based on the Wald test and LRT. Sex did not show a significant effect and was 

not included in the final model. Estimates for the final model using a combined 

error model and CKD as the only covariate are also given in Table 4.4 for both 

scenarios.  
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Table 4.4: Fixed and random effect parameter estimates (%SE) for the population approach. 

Parameter Estimates Description 

 Scenario A: Estimating 2ŝ  Scenario B: Estimating ĉ   

 Base model Final model Base model Final model  

2ŝ  (days) 162.49 (6.9) 201.42 (7.4) - - population mean estimate 

ĉ  (days-1) 
- - 0.0133 (7.3) 0.0106 (8.5) population mean estimate 

CKD - -0.4511 (23.3) - 0.4703 (23.8) covariate factor of CKD 

 0.1117 (34.1) 0.0601 (36.3) 0.1296 (33.6) 0.0721 (34.5) between subject variance 

L  (days) 62.8 69.4 56.0 63.7 mean RBC lifespan 

L  (days) - 56.2 - 48.1 
mean RBC lifespan with 

covariate effect of CKD 

add2 2.96 (12.5) 3.12 (12.4) 2.27 (12.4) 2.05 (12.1)  additive error (variance) 

CVprop 0.0251 (12.5) 0.0244 (12.4) 0.0234 (12.4) 0.0256 (12.1) 
proportional error (coefficient 

of variation) 

OFVLL -780.10 -773.43 -752.12 -745.51 log likelihood 
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Estimating random destruction was again preferred over an accelerated 

senescence for both models based on the OFVLL, albeit these models are not 

nested. Figure 4.4 shows the population mean prediction for the base model as 

well as the full model for both scenarios, while Figure 4.5 shows the 

corresponding VPCs. An over-prediction during the first 15 – 20 days is 

apparent in these figures. 

 

 

Figure 4.4: Population fit obtained using MONOLIX: Base model (upper panels) and 

full model (lower panels) for controls (—, covi = 0) and CKD patients (, covi = 1) for 

Scenario A (left column) and Scenario B (right column), respectively. ( data of 

controls,  data of CKD patients). 
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Figure 4.5: VPCs for estimating senescence (left column) and random destruction 

(right column) for the base model (first row, no covariate), the full model for controls 

(second row, covi = 0), and the full model for CKD patients (third row, covi = 1).  

( data of controls,  data of CKD patients; — 50th percentile, — 10th and 90th 

percentiles of model predictions). 
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4.6. Discussion 

4.6.1. Modelling of the clinical data 

The data set does not allow full parameter estimation under the proposed 

model as the study was not designed for this purpose. Nevertheless, the 

available rich data for each individual allowed estimation of the parameters of 

highest interest in a classical two-stage approach and also supports a full 

population approach with covariate analysis. It is noted that RUV and BSV are 

not differentiated in the two-stage approach; therefore, BSV was naturally 

overestimated. A clear preference was seen for random destruction being the 

predominant mechanism of RBC destruction and this was consistent across 

individuals. 

CKD was found to be a significant covariate in the population approach 

leading to a reduction in RBC survival and a significant reduction of 

approximately 45% in the unexplained BSV. In contrast, sex was found not to 

be a significant covariate. This was not unexpected as women of childbearing 

age were excluded from this study and peri-menopausal women are believed 

to have the same apparent RBC survival as males [35,38]. 

Both approaches resulted in similar estimates for the apparent mean RBC 

lifespan with a significant reduction in RBC survival in the CKD group 

compared to the healthy controls with a relative reduction of 20 - 30% 

depending on the analysis approach. Although this reduction is less than 

reported in the literature of up to 50% [44,153,168], it has to be noted that 

previous studies did not rely on age and sex matched controls, and had only a 

small number of healthy individuals in the control group, or normalise their 

results to an assumed survival value of 120 days in healthy individuals [169]. 

Recently, Vos et al. [27] published the clinical data that was used here in this 

analysis. Their own analysis used standard techniques and found a reduction 

in the median RBC survival of 20% between CKD patients and controls. This 

outcome shows good agreement with the model based approach presented 



Chapter 4: Modelling red blood cell survival data 

 146 

 

here. However, in this work it was possible to tease out a deeper insight into 

possible underlying mechanisms of RBC destruction. 

4.6.2. Preferred mechanism of RBC destruction 

Estimating the random destruction component was preferred over 

estimating the main parameter controlling senescence on an individual level 

(two-stage approach) as well as in the full population setting. This suggests the 

presence of a higher degree of random destruction (approximately 1%) in 

healthy individuals than assumed in the previous chapters (0.24%). However, 

random destruction and age-independent loss of the label from viable RBCs 

(elution) are both first-order processes that cannot be distinguished [170]. 

Elution was fixed to 1% per day in this work according to literature [171]; but it 

was also shown that the degree of elution depends on the methods used during 

ex vivo labelling of the cells (ranging from 0.95% - 1.7% per day) [147]. Since the 

elution process is based on physicochemical properties of 51Cr binding to Hb it 

is plausible that pathological differences between individuals in this study are 

not likely to drive this process, albeit that this assertion is unprovable in this 

work. Therefore, the common practise to correct for a constant elution rate of 

1% per day as the only mechanism of non-RBC related loss of label was 

retained in this analysis.  

Nevertheless, CKD patients showed an additional increase in random 

destruction compared to healthy individuals which would support an 

increased random destruction as a possible underlying mechanism of anaemia 

in CKD, although this finding could also be explained by a higher degree of 

elution in CKD patients. With respect to these assumptions, the apparent mean 

lifespan values obtained in this analysis (as in any previous study using 51Cr) 

have to be regarded as relative values and do not reflect the actual mean 

survival of RBCs in the circulation. 

Moreover, nonspecific binding of excess 51Cr to plasma proteins with a 

short half-life is also likely to be present with this labelling method. In addition, 

51Cr binds to platelets and leukocytes during the ex vivo labelling process in 
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whole blood [172-174]. This would be expected to result in an additional loss of 

label from the circulation that is not related to RBC survival or the loss of label 

from RBCs. At this point, the impact of these processes have not been 

quantified sufficiently in literature to be incorporated into the model. The 

model appears to over-predict the initial phase of loss of label from the 

circulation up to approximately day 20, as was seen in the VPCs. This 

discrepancy is in keeping with the nonspecific labelling of other cellular and 

protein elements in the autologous blood matrix. The higher initial loss has also 

been attributed to fragile RBCs damaged during the ex vivo labelling process. 

An exploratory compartmental analysis testing for mono- versus biphasic 

behaviour was conducted which did not reveal the presence of two random 

processes of loss of label in this data set as the one-compartment model was 

preferred in both groups (results not shown). It was also investigated whether 

the model supported estimation of initial or delayed destruction by assessing 

the parameters r1 and/or r2. Using a two-stage approach, the initial failure r2 

was estimated consecutively after estimating random destruction c with an 

adjusted mixing parameter m = 0.5 to allow for a higher contribution of the 

initial failure, and the estimation of c was then repeated based on the obtained 

value of r2. The fit improved to a negligible extent (not statistically significant). 

However, due to the limited information inherent in random labelling with 

51Cr it is not possible to determine the contribution of initial or delayed failure 

simultaneously with estimating random destruction or senescence in a full 

population approach. Therefore, the desired deeper insight into the various 

RBC distruction mechanisms contributing to anaemia of CKD cannot be 

achieved at the moment. Nevertheless, the model captures the later phase of 

loss of label well, and thus provides a good description of the clinically more 

important long-term survival of RBCs. 
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4.7. Additional analyses 

In addition to the analyses presented here in this chapter, two more 

analyses were conducted on the data of Vos et al. [165]: 

 The administration of rHuEPO was tested as covariate on the 

survival on RBCs based on the population approach.  

 An additional cohort of five patients receiving peritoneal dialysis 

(PD) in the study by Vos et al. was analysed using the two-stage 

approach. 

As these analyses are not directly related to the objectives of this chapter, 

only a brief background and a concise discussion of the results is provided 

here, while the materials, methods and full results can be found in the 

corresponding appendices as indicated below. 

4.7.1. Additional analysis testing for rHuEPO administration as covariate 

4.7.1.1. Background 

It is discussed in literature that rHuEPO treatment has an effect on RBC 

survival; however the nature of this effect is disputed. Some authors report an 

increased RBC lifespan under rHuEPO treatment [157,175]. Yet, others have 

found no evidence for an increased RBC survival in CKD patients under 

rHuEPO treatment [158,176]. In contrast, in haematologically normal rats, 

administration of rHuEPO resulted in a shortened RBC lifespan that could be 

attributed to an inefficient RBC production due to stress erythropoiesis [177]. 

4.7.1.2. Results & Discussion 

An additional analysis based on the population approach was conducted 

to test whether the administration of rHuEPO is a significant covariate on RBC 

survival. The materials and methods used for this analysis together with the 

full results are presented in Appendix A.4.2. 

In summary, rHuEPO proved to be a significant covariate. However, the 

inclusion of this covariate effect in the model resulted in the effect of CKD on 
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RBC survival to become insignificant. CKD patients receiving only iron 

supplementation had an RBC survival similar to the healthy controls. The same 

preference towards estimating random destruction was seen as with the model 

using CKD as covariate. It needs to be noted that using rHuEPO as a covariate 

instead of CKD resulted in a slightly improved fit for both scenarios according 

to the higher OFV: 

Table 4.5: Comparison of OFVLL for different covariates in the model. 

Covariate in model Scenario A Scenario B 

CKD -773.43 -745.51 

rHuEPO -769.65 -742.10 

 

Although it is tempting to conclude from these results that the 

administration of rHuEPO and not the underlying pathology of CKD results in 

the decreased RBC survival, such a conclusion cannot be drawn irrevocably 

due to the small numbers of patients not receiving rHuEPO treatment in this 

study. A type I error cannot be excluded. Importantly, it is likely that these 

effects are principally due to confounding, as it is likely that only CKD patients 

with more severely decreased RBC survival and therefore more severe anaemia 

received rHuEPO treatment. In fact, the Hb concentrations of two of the three 

patients not receiving rHuEPO were higher than the average in the CKD 

cohort, while the third was close to the mean (136, 146, and 126 g/L versus 

mean = 122 g/L). Note, that the definition of anaemia is a Hb concentration of 

<130 g/L. 

4.7.2. Additional analysis for patients receiving peritoneal dialysis 

4.7.2.1. Background 

In patients undergoing haemodialysis (HD) RBCs are subjected to high 

mechanical stress during the extracorpuscular circulation and additional 

damage of the cells by the dialysis membrane is likely. This is supported by 

results of Medina et al. who found increased RBC turnover during HD [64]. 
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However, the literature remains unclear as to whether RBC survival is truly 

decreased further by HD, e.g. in comparison to less mechanically stressful 

dialysis methods such as peritoneal dialysis (PD). 

Vos et al. included five additional CKD patients into their study that 

received PD rather than HD [165]. Surprisingly, patients receiving PD had a 

mean RBC lifespan similar to, but slightly shorter than patients undergoing HD 

(55.3 versus 58.1 days) based on their empirical analysis. However, they 

suggested that their results could have been confounded with the older age of 

the patients in the PD cohort as the effect of age on RBC survival is unknown. 

4.7.2.2. Results & Discussion 

Here, the data of the five PD patients in the study by Vos et al. were 

analysed based on the more mechanistic RBC survival model using the two-

stage approach as it was described for the HD patients and controls. The full 

results for the PD patients are presented in Appendix A.4.3. 

Briefly, the calculated apparent mean RBC lifespan values in these 

patients fall between those estimated for HD patients and healthy controls for 

both scenarios (Table 4.6). Yet, none of these differences were found to be 

statistically significant based on unpaired t-tests with unequal variances. Note, 

that due to the small number of PD patients this cohort was not included in the 

population analysis presented in this chapter. 

Table 4.6: Comparison of apparent mean RBC lifespan values obtained  

using the two-stage approach for the different patient cohorts. 

Destruction mechanism HD patients PD patients Controls 

Scenario A 59.3 63.2 75.6 

Scenario B 49.8 55.4 69.1 

 

In contrast to the somewhat surprising results of the empirical analysis by 

Vos et al., RBC survival in PD patients was found to be slightly longer than in 

HD patients when using the more mechanistic based RBC survival model for 

analysis. This new analysis strengthens the hypothesis that increased 
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mechanical stress during HD results in a decrease in RBC survival in addition 

to the shortening caused by the underlying pathology of CKD; yet the extent of 

this seems to be minor. Further studies in a larger patient cohort (preferably 

age and sex matched between the PD and HD groups) are required to 

ultimately determine the effect of HD on RBC survival. However, the 

difference between the results obtained by Vos et al. and the results based on 

the mechanistic RBC survival model shown here also indicates the importance 

of the choice of an adequate model for RBC survival. 

4.8. Conclusion 

In conclusion, individual parameters of the proposed RBC survival model 

can be estimated from available clinical data in a two-stage approach as well as 

using a full population approach. RBC survival is significantly reduced in CKD 

patients undergoing haemodialysis despite iron supplementation and 

treatment with rHuEPO. Without ruling out multiple contributing 

mechanisms, this analysis suggests that an increased random destruction is 

more likely as underlying pathological mechanism than an accelerated 

senescence. 

In additional analyses it appeared that administration of rHuEPO or CKD 

is related to the decreased RBC survival and the current data are insufficient to 

delineate these processes.  

Albeit not statistically significant, patients on PD showed a somewhat 

longer RBC survival than patients undergoing HD but still had a shorter 

apparent mean RBC lifespan than healthy controls. This suggests that the 

increased mechanical stress on the RBCs during HD has a small additional 

negative effect on their survival. 
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This chapter will form the basis for a publication that will be submitted as:  

Korell J, Stamp L, Duffull S et al. (2012) A population pharmacokinetic model for 

methotrexate measured in red blood cells.  
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5.1. Synopsis of the Chapter 

In this chapter, a population pharmacokinetic (PK) model for 

methotrexate (MTX) and its polyglutamated metabolites (MTXPGs) is 

developed using a top-down approach based on data measured in red blood 

cells (RBCs). Model development is broken into two parts: 1) the development 

of a PK model for the parent drug only; and 2) the development of a full 

parent-metabolite model. The final model is then assessed based on simulations 

and compared with previous findings. Inferences from the model will be 

explored in Chapter 6. 

5.2. Introduction 

MTX is the gold standard disease modifying anti-rheumatic drug 

(DMARD) in the treatment of rheumatoid arthritis (RA) [108]. MTX is a so-

called folate antagonist, yet its mechanism of anti-inflammatory activity is 

poorly understood. Besides inhibiting key enzymes in the folate pathway, such 

as dihydrofolate reductase (DHFR), MTX also interferes with DNA synthesis 

and inhibits the enzyme ATIC (5-aminoimidazole-4-carboxamide 

ribonucelotide transformylase) which in turn reduces the production of 

proinflammatory cytokines such as interferon-, TNF- and interleukin 1 due 

to an accumulation and secretion of adenosine [100-105].  

Usually, low MTX doses (5 – 20 mg weekly) are used orally in the 

treatment of RA [108]. However, parenteral administration, either 

subcutaneous (sc) or intramuscular, can lead to better disease control in 

patients that show poor responsiveness to oral MTX [178-184], and parenteral 

administration is also associated with fewer adverse effects. Both can be 

attributed at least partially to the higher bioavailability via the parenteral route 

[87,88,91,185], as oral MTX is taken up via a saturable, active transport 

mechanism from the gut. When higher oral MTX doses (15 – 20 mg) are 

administered saturation of the active uptake transporters can occur, which 

results in MTX not being completely absorbed from the gastrointestinal tract. 
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This can increase local gastrointestinal adverse effects such as nausea and 

vomiting. Parenteral administration on the other hand allows higher doses to 

reach the systemic circulation than can be achieved orally, which leads to a 

better disease control than obtained with oral administration. 

Fast disease control is desired in the therapy of RA to prevent joint 

damage, which is largely irreversible. However, MTX doses required to achieve 

adequate disease control are highly variable between patients and difficult to 

predict as no target for treatment monitoring has been established. The most 

common biomarker for therapeutic drug monitoring (TDM), plasma 

concentration, has not proved suitable for monitoring low-dose once weekly 

MTX treatment, as no correlation between MTX plasma concentrations and 

clinical outcomes of low-dose MTX has been established [115]. In addition, 

MTX plasma concentration rapidly fall below the limit of quantification (LOQ) 

and steady state plasma concentrations cannot be measured.  

More recently, MTX  and MTXPG concentrations measured in RBCs have 

been suggested as a potential biomarker for MTX monitoring [114]. However, 

RBCs are not involved in any of the postulated anti-inflammatory mechanisms 

of action of MTX. Therefore, MTX concentrations measured in RBCs are 

unlikely to have a causal relationship with disease outcomes or MTX treatment 

effects in RA. Yet, as MTX and MTXPGs accumulate inside RBCs (and other 

cells) [95], MTX and MTXPG concentrations measured in RBCs might be easily 

accessible measures for cumulative MTX exposure and therefore could have a 

potential as a biomarker for MTX treatment if a predictable correlation with 

pharmacodynamic (PD) outcomes exists.   

Intracellular uptake of MTX takes place via a transporter known as 

reduced folate carrier (RFC). Inside the cells, the enzyme folylpolyglutamate 

synthetase (FPGS) adds glutamate moieties to the molecule in a stepwise 

manner, resulting in the sequential formation of polyglutamated MTX 

metabolites, MTXGluX, where X stands for the total number of glutamate 

moieties in the molecule. It needs to be noted that the parent MTX molecule 

itself already contains one moiety of glutamate and is therefore also referred to 
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as MTXGlu1 in this thesis. Up to four additional molecules of glutamate are 

added to MTXGlu1 inside RBCs, resulting in the metabolites MTXGlu2 up to 

MTXGlu5. Another enzyme, -glutamyl hydrolase (GH), removes terminal 

glutamate moieties from MTXPGs. The monoglutamated form MTXGlu1 is 

then removed from the cells via efflux pumps such as multi drug resistance 

transporters (MDRT). The affinity of these efflux pumps to transport MTX 

decreases with increasing chain length (highest for MTXGlu1, lowest for 

MTXGlu5), and all MTXGluX accumulate intracellularly [99]. This 

accumulation seems to play a major role in the activity of MTX as MTXPGs are 

active metabolites [95,107]. Several studies have shown a correlation between 

disease control and MTXPG concentrations, mainly MTXGlu3 and the long-

chain polyglutamates MTXGlu4 and MTXGlu5 [114-116]. However, these 

findings were not verified in a more recent cross-sectional study [117].  

A better understanding of the accumulation kinetics of MTXPGs inside 

RBCs might help to get a better description of the relationship between MTXPG 

concentrations in RBCs and disease control. Yet, MTXPG kinetics in RBCs have 

rarely been described using mathematical models in literature so far. One 

approach by Dalrymple et al. used an empirical exponential model to describe 

the PK of MTX and its polyglutamates measured in RBCs [186]. In their study, 

each patient was modelled individually using a two-stage approach and the 

metabolites were treated as independent compounds. Large variability in the 

results between the individual patients was found. 

5.3. Objectives 

The objective of this work was to develop a population PK model for low-

dose MTX and its polyglutamated metabolites measured in RBCs as first step 

towards a full PKPD model for MTX.  

To achieve this objective, a top-down modelling approach is applied to 

clinical data resulting in an empirical model on the basis of a classical 

compartmental PK analysis. 
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5.4. Methods 

5.4.1. The Data 

5.4.1.1. Patients 

Clinical data was available from two studies conducted in Christchurch, 

New Zealand, between 2005 and 2009 (ACTRN 012606000275561) [186,187]. 

Both studies were approved by the Upper South B Regional Ethics committee, 

and all patients gave written informed consent. 

The first study (in the following referred to as “oral study”) included 

patients with RA who either started (“starters”) or stopped (“stoppers”) weekly 

low-dose oral MTX treatment [186]. Patients stopping MTX had been on MTX 

for at least three months prior to being enrolled in the study. All patients were 

followed for a minimum of 24 weeks. Clinical data, MTX dosing data and 

MTXGluX measurements were available from 18 patients, equally divided in 

nine starters and stoppers, respectively. One of the stoppers restarted MTX 

treatment during the time course of the study. (Note that this is the same data 

that was analysed previously by Dalrymple et al. using the empirical model 

[186].) 

The second study (“sc study”) was conducted by the same group of 

researchers and involved patients with RA on a stable weekly dose of oral MTX 

treatment that were switched to sc administration at the beginning of the study 

due to insufficient disease control and/or adverse effects under oral treatment 

[187]. In this study one patient started immediately on sc MTX without prior 

oral MTX treatment. Again, all patients were followed for at least 24 weeks. 

Data from a total of 30 patients were available for the analysis presented here 

(one of which ceased MTX treatment during the time course of the study).  

In both studies, clinical assessment of the patients was undertaken at 

study begin (baseline at week 0) and weeks 8, 16 and 24. Standard patient 

demographics and laboratory data (including mean corpuscular volume (MCV) 

and haemoglobin (Hb) concentrations) were recorded at these visits together 

with the assessment of disease activity and adverse effects associated with 
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MTX treatment. Table 5.1 shows the demographics of patients included in this 

analysis. All patients received concomitant folic acid supplementation of 5 mg 

per week, administered on a weekday different from the MTX dosing. 

Table 5.1: MTX treatment schedule and patient characteristics (mean  SD) in the 

oral [186] and sc study [187], together with the polled data used in the analysis here.  

Patient characteristics oral study  sc study pooled 

Number of individuals 18 30 48 

Starters 9 1 10 

Stoppers  9 a 1 10 

Continuous treatment - 28 28 

Weekly MTX dose range [mg] 5 – 20 10 – 20 5 – 20 

M:F 7:11 7:23 14:34 

Age [years] 58.1  8.8 53.1  9.7 55.0  9.6 

Weight [kg] 75.2  13.5 78.4  16.6 77.2  15.4 

Height [cm] 172.2  6.6 b 162.2  31.1 164.7  27.3 

Hb [mg/L] 128.3  17.4 129.7  11.4 129.2  13.8 

MCV [fL] 90.7  7.0 93.1  4.5 92.2  5.6 
a one patient restarted MTX treatment later on during the study 
b values for height missing for eight individuals in the oral study 

5.4.1.2. Blood sampling and analysis 

In patients starting MTX treatment, trough samples (within 36 hours prior 

to MTX dosing) were collected weekly for eight weeks, followed by fortnightly 

sampling until a stable maintenance dose of MTX was achieved. Thereafter 

samples were collected every four weeks until at least week 24, or until the 

patient withdrew from the study. For stoppers in the oral study and all patients 

in the sc study weekly (trough) samples were obtained until week 8, followed 

by fortnightly sampling until week 16, and then every four weeks until at least 

week 24, or until withdrawal from the study. 

MTXGluX were measured in duplicate samples using high-performance 

liquid chromatography as described previously [186], separately measuring the 
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concentration of each MTXGluX in packed RBCs. The average of the raw 

duplicate MTXGluX measurements, not normalised for RBC count, were used 

for the PK modelling analysis. Initial runs were conducted using the non-

averaged observations with an adjusted error model accounting for correlation 

between the replicates but no advantage was seen in parameter estimation and 

due to excessive run times this was abandoned. 

The LOQ of the analytical assay was 5 nmol/LRBCs for all MTXGluX. Data 

below LOQ (BLQ data) was censored and reported as 0 in the data sets, 

without distinction from the limit of detection, which in turn was not reported. 

For a limited number of samples actual measurements of the BLQ data could 

be retrieved. The remaining BLQ data remained reported as BLQ. The 

percentage of BLQ data was 16%, 13%, 11%, 23% and 45% for measurements of 

MTXGlu1 to MTXGlu5, respectively. 

5.4.2. Structural model development 

5.4.2.1. Plasma PK model for MTX 

No plasma MTX concentrations were measured in either of the studies 

available for analysis. Therefore, MTX plasma PK was assumed to follow the 

population PK model previously published by Hoekstra et al. [91]. These 

authors investigated the differences in bioavailability (F) of MTX after oral 

versus sc administration in patients with RA using higher weekly doses of MTX 

(25 – 40 mg) than in these studies here (5 – 20 mg). They found a two-

compartment model with absorption lag times for both routes of 

administration best described their data. F was assumed to be 100% for sc 

administration (Fsc = 1), while the median Foral was estimated in relation to Fsc 

as 64%, yet with a wide range (21 – 96%). The authors did not report whether 

this was dose-dependent. The mean population parameter estimates for the 

remaining parameters are given in Table 5.2. These values were used to predict 

the population mean plasma concentration-time profiles of MTX in the patients 

analysed here, not accounting for any between subject variability (BSV) or 

residual unexplained variability (RUV) in the plasma PK. To account for the 
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known dose-dependency of oral MTX bioavailability, Foral was set to 0.7 as 

reported by Herman et al. [88]. In contrast to Hoekstra et al., this study used a 

lower oral MTX dose (10 mg/m2  17.5 mg/week) which is similar to the dose 

used in the oral study of this analysis (median oral dose 12.5 mg/week). 

Table 5.2: Population mean parameter estimates for the plasma MTX model published 

by Hoekstra et al. [91], oral bioavailability Foral as published by Herman et al. [88]. 

Parameter Population mean Description 

kaoral [hr-1] 0.87 oral absorption rate constant 

tlagoral [hrs] 0.36 lag time for oral absorption 

Foral 0.70 oral bioavailability (based on [88]) 

kasc [hr-1] 0.36 sc absorption rate constant 

tlagsc [hrs] 0.06 lag time for sc absorption 

Fsc 1.0 sc bioavailability 

V1 [L] 9.6 central volume of distribution 

CL1 [L/hr] 8.4 clearance of MTX from plasma 

k12 [hr-1] 
 

0.81 
 

intercompartmental transfer rate constant 
from central to peripheral compartment 

k21 [hr-1] 
 

0.55 
 

intercompartmental transfer rate constant 
from peripheral to central compartment 

 

5.4.2.2. Parent model for MTXGlu1 in RBCs 

Intracellular RBC MTXGlu1 kinetics were modelled by adding a third 

compartment to the plasma PK model published by Hoekstra et al. [91], which 

is not in mass balance with the plasma PK and therefore similar to a 

hypothetical effect compartment in delayed effect PKPD models [188]. It needs 

to be noted however, that in this work all observations were in the effect 

compartment as only measurements of RBC MTXGluX concentrations were 

available in both studies. In contrast, classical effect compartment models do 

not usually have any observations in the effect compartment. 

First-order kinetics as well as active transport were initially tested for the 

uptake of MTXGlu1 into RBCs from the central compartment. However, only 
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the first-order process gave stable estimates and was therefore retained in this 

analysis. Simple first-order elimination of MTXGlu1 from RBCs was assumed 

in the parent model. A schematic of the model is shown in Figure 5.1. 

Structural parameters estimated in the parent model were kin, the rate constant 

of MTXGlu1 uptake into RBCs, the apparent volume of distribution of 

MTXGlu1 inside RBCs (VGlu1) and CLGlu1, the clearance of MTXGlu1 from RBCs, 

while the elimination rate constant from RBCs is given by CLGlu1/VGlu1. 

 

 

Figure 5.1: Parent model for MTXGlu1 based on the two-compartment plasma PK 

model of Hoekstra et al. [91] with an additional compartment for the RBC PK model. 

Parameters of the plasma PK model are explained in Table 5.2 and were fixed at the 

population mean values. Parameters for the RBC PK model kin, VGlu1 and CLGlu1 were 

estimated in this analysis. Note that the RBC compartment is not in mass balance with 

the plasma PK model, similar to an effect compartment in delayed PKPD models. 
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5.4.2.3. Parent-metabolite model for MTXGluX in RBCs 

The structure of the full parent-metabolite model for MTXGluX was 

derived by adding an additional catenary RBC compartment for each MTXPG 

to the parent model, resulting in a total of five catenary RBC compartments 

(Figure 5.2). The transfer between the compartments was described as first-

order reaction with individual rate constants for each step; although these steps 

are catalysed by FPGS and GH for the polyglutamation and deglutamation 

steps, respectively. The volume of distribution parameters (VGluX) were 

assumed to be correlated for all MTXGluX.  

 

Figure 5.2: Parent-metabolite model for MTXGluX with a catenary RBC compartment 

for each MTXGluX. Structural parameters estimated for the full model:  kin, CLGlu1, 

VGlu1, VGlu2, VGlu3, VGlu4, VGlu5, kFPGS1, kFPGS2, kFPGS3, kFPGS4, kGH2, kGH3, kGH4, and 

kGH5. 

 

5.4.3. Data analysis 

NONMEM version 7.2 (ICON Development Solutions, Ellicott City, MD) 

was used to fit the data [23]. Due to long run times, Stuart Beal’s method M6 

[189] was used for handling BLQ data during model development to allow for 

parameter estimation using the first-order conditional estimation method with 

interaction (FOCE INT). Using this method the first or last BLQ measurement 

in the data set in a sequence of decreasing or increasing concentrations is 



Chapter 5: A population pharmacokinetic model for methotrexate measured in red blood cells 

165  

 

replaced with a value of LOQ/2, which was equal to 2.5 nmol/L in this 

analysis, and more extreme values (either before or after this value) were 

censored from the data set. All parameters in the final parent model and the 

final parent-metabolite model were re-estimated applying the M3 method for 

BLQ data which uses the Laplacian method with interaction in NONMEM, 

where BLQ data is treated as censored and the joint likelihood of the true and 

censored observations is computed.  

ADVAN5 was used as subroutine in NONMEM as all processes in the 

model are described by first-order rate constants. ADVAN5 uses matrix 

exponentials to analytically solve linear ordinary differential equations and 

therefore reduces the computational effort compared to time-stepping 

numerical integration methods [23]. 

5.4.3.1. Statistical models for between subject and residual variability 

BSV on structural parameters was modelled according to Equation 5.1 for 

the pth parameter. 

ipepip
η

θ
ˆ

θ̂   

Equation 5.1: Between subject variability on structural parameter estimates. 

where ipθ̂ is the individual parameter estimate for the ith individual, pθ
ˆ is 

the population mean parameter estimate and ipη is the random effect for the ith 

individual, following a normal distribution with mean = 0 and variance = pp
2.  

RUV was modelled independently for each MTXGluX as a combined 

error model with: 

    }X{
2

}X{
1

}X{
1,ˆ

jjijiij tfy   θ  

Equation 5.2: Statistical model for residual unexplained variability for each 

MTXGluX. 
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where }X{
ijy  is the jth observation for MTXGluX in the ith individual 

observed at time tij, f() is the structural model, iθ̂ are the individual parameter 

estimates of the ith individual, }X{
1 j  is proportional error component having the 

variance 2
propGluX, and }X{

2 j  is the additive error component with variance 

2
addGluX. The RUV of the individual MTXGluX were assumed to be 

independent, despite the fact that all metabolite concentrations were measured 

from a single blood sample at each observation, i.e. the L2 data item function in 

NONMEM was not applied here. The L2 function would require the RUV 

parameters 2propGluX and 2addGluX to be coded as random effect parameters 

that are correlated between the individual MTXGluX, i.e. coded as EPSILONs 

in a $SIGMA BLOCK with off-diagonal elements for the covariances in the 

NONMEM control stream. However, in this analysis the RUV parameters 

were coded equivalent to fixed effect parameters without correlation, i.e. as 

THETAs in $PK, to allow for the implementation of the M3 method for 

handling BLQ data.  

5.4.3.2. Stability & Sensitivity analysis for the parent-metabolite model 

During the structural model development process the full parent-

metabolite model was found not to be globally identifiable (i.e. multiple sets of 

parameter estimates provided an equally good fit to the data) due to its high 

number of parameters and catenary structure. Subsets of the structural 

parameters were subsequently fixed until the resulting reduced model was 

found to be stable. Stability was assessed as successful convergence to the same 

parameter estimates from at least two sets of different initial estimates.  

In addition, a sensitivity analysis on the parameter estimates was 

performed to assess local identifiability of the parameter estimates for the 

reduced model. Absolute and normalised sensitivity were calculated according 

to Equation 5.3 for each parameter estimate p̂  [ θˆ , , 2] in the reduced 

model. 
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Equation 5.3: Sensitivity (S) and Normalised Sensitivity Index (NSI), with p̂ = 

estimate of parameter tested, δ = level of change in the parameter estimate. 

An initial change of +10% in each parameter estimate (δ = 1.1) was 

considered in this analysis, and extended to -10%, +25% and -25% (δ = 0.9, 1.25 

and 0.75, respectively) if the model was found to be insensitive to a certain 

parameter at the +10% change level.  

5.4.3.3. Covariate analysis 

5.4.3.3.1. Covariate analysis for the parent model 

Total body weight (WT), lean body weight (LBW), MCV and Hb 

concentration ([Hb]) were tested during model building of the parent model as 

covariates on VGlu1 based on biological plausibility or prior evidence in the 

literature [190]. All covariates were centred based on their median value in the 

study population according to: 

ipe
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Equation 5.4: Covariate model. 

where COVi is the individual covariate value in the ith individual and 

using the following median values COVmedian: 70 kg for WT, 45 kg for LBW, 130 

g/L for [Hb] and 90 fL for MCV. Here,  denotes the estimated coefficient of 

the covariate, which is estimated as a fixed effect parameter in NONMEM.  

LBW was calculated as proposed by Janmahasatian et al. [191] based on 

WT and body mass index (BMI) according to: 



Chapter 5: A population pharmacokinetic model for methotrexate measured in red blood cells 

 168 

 

females for   
BMI2448780

WT9270
 LBW 

males for   
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Equation 5.5: Formulas to calculate lean body weight according to [191]. 

Height (HT) was missing for eight individuals in the oral study for the 

calculation of BMI in Equation 5.5. Therefore, a multiple linear regression of 

height against sex and weight at baseline in the remaining 40 patients was used 

for a single value imputation of height in these eight individuals. The linear 

regression was derived as (see Appendix A.5.1): 

HT = 0.21WT + 19.69SEX – 0.14WTSEX +150.25 

Equation 5.6: Imputation of height based on weight and sex, where SEX = 0 for 

females and SEX = 1 for males. 

In both studies, covariates were only recorded during the clinical visits 

and not at each time point of MTX measurements. Therefore, the last covariate 

observation was carried forward for MTX observations with missing covariate 

values occurring after the first clinical visit, while the first covariate observation 

was carried backward for MTX observations with missing covariates before the 

first clinical visit. 

5.4.3.3.2. Covariate analysis for the parent-metabolite model 

Covariates that were found to be significant on VGlu1 in the parent model 

were retested for their significance during model development of the parent-

metabolite model. Only covariates that were found to reduce the OFV when 

applied on all VGluX were included in the final parent-metabolite model. 

  



Chapter 5: A population pharmacokinetic model for methotrexate measured in red blood cells 

169  

 

5.4.3.4. Model selection and evaluation 

Model selection was based on the objective function value (OFV) applying 

the likelihood ratio test (LRT) for nested models and Akaike’s Information 

Criterion (AIC) for non-nested models, as well as reduction of random BSV and 

RUV. Graphical diagnostics included goodness of fit plots, individual 

predictions overlaid with the data and individual weighted residual plots. 

Non-parametric bootstrap was used to evaluate the parent model. 2000 

bootstrap runs were conducted in NONMEM. The resampling procedure 

(with replacement) was stratified based on the number of patients that started 

or stopped MTX or were on a continuous MTX schedule in the original study. 

Runs that minimized successfully were used to calculate the empirical 95% 

confidence interval from the 2.5th and 97.5th percentiles. These also included 

successful minimisations were the covariance step was not successful [192]. 

The fully reduced parent-metabolite model including the final covariates 

was also evaluated using non-parametric bootstrap. However, due to the long 

run times for the parent-metabolite model, only 400 stratified bootstrap runs 

were conducted in NONMEM. The mean and standard deviation for the runs 

with successful minimisation were obtained and used to calculate the 

asymptotic empirical 95% confidence interval. 

5.4.4. Model assessment 

5.4.4.1. Predictive performance of the final parent-metabolite model 

The predictive performance of the final parent-metabolite model was 

assessed based on simulations. The time to reach steady state in all MTXGluX 

was computed for an average individual based on the population mean 

parameter estimates and compared to the findings of Dalrymple et al. [186], as 

well as the postulated normal survival of RBCs. For the simulation, continuous 

treatment with an unchanged dose of 10 mg MTX orally once a week over two 

years was assumed. The MTXGluX profiles over time were also assessed from 

this simulation based on the ratio of MTXGlu1 to MTXGlu2, 3, 4 and 5. 
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5.4.4.2. Comparison of MTXGluX kinetics in RBCs with the kinetics observed 

in other cell lines 

The MTXGluX kinetics in RBC described by the final parent-metabolite 

model and the in vitro kinetics observed in human breast cancer cells were 

directly compared based on the results published by Morrison and Allegra [8]. 

These authors used a similar catenary model structure and the final parent-

metabolite model is based on fixed values for the polyglutamation rate 

constants (referred to as a group as kFPGS1-4 in the following) obtained from this 

publication. 

In addition, an indirect comparison with in vivo MTXGluX kinetics 

observed by Panetta et al. [90] in acute lymphoblastic leukaemia is provided. 

5.5. Results 

5.5.1. Parent model for MTXGlu1 in RBCs 

The parameter estimates for base and final model for the parent MTXGlu1 

are shown in Table 5.3. These estimates were obtained using the M3 method to 

handle BLQ data. The corresponding NONMEM code is given in Appendix 

A.5.2. 
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Table 5.3: Parameter estimates for the base and final parent model for MTXGlu1 and bootstrap (BS) results for the final parent model. 

Parameter Estimate Shrinkage [%] a Median (BS) b Empirical 95% CI (BS)  b,c 

Base model     

kin [hr-1] 1.06 x 10-4 -   

CLGlu1 [L/hr] 5.79 x 10-4 -   

VGlu1 [L] 0.278 -   

BSV kin [%] 70.5 12.2   

BSV CLGlu1 [%] 8.1 88.8   

BSV VGlu1 [%] 120.3 4.7   

CVprop [%] 21.3 -   

add [nmol/L] 3.42 -   

Epsilon shrinkage [%] - 8.3   

Final model with covariates on VGlu1    

kin [hr-1] 1.35 x 10-4 2.5 1.40 x 10-4 9.09 x 10-5 – 2.00 x 10-4 

CLGlu1 [L/hr] 7.05 x 10-4 - 7.00 x 10-4 4.90 x 10-4 – 1.03 x 10-3 

VGlu1 [L] 0.287 8.9 0.286 0.184 – 0.434 

BSV kin [%] 63.7 - 63.6 47.8 – 87.2 

BSV VGlu1 [%] 110.1 - 110.1 71.2 – 139.2 

CVprop [%] 20.3 
8.9 

20.3 16.3 – 24.8 

add [nmol/L] 3.58 2.43 1.32 – 5.21 
a -shrinkage given for BSV parameters, -shrinkage given together with the RUV parameters CVprop and add. 
b Non-parametric bootstrap statistics based on 1126 runs with successful minimisation out of 2000 runs. 
c Empirical 95% confidence interval (CI) constructed from the 2.5th and 97.5th percentiles. 
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The combination of LBW, [Hb] and MCV was found to have a significant 

covariate effect on VGlu1 in the final parent model resulting in a reduction in the 

OFV of -16.93. However, estimation of the covariate coefficient  was not 

supported and this parameter was fixed to 1. This covariate is biologically 

plausible as the product of LBW, [Hb] and MCV can be regarded as an 

approximation of the true total volume of RBCs (true VRBCs) circulating in the 

body as shown in Equation 5.7 where AHb is the total amount of Hb in the 

body. 
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Equation 5.7: Biological plausibility of covariates on VGlu1. 

By dividing all covariates by their median value, the total volume of RBCs 

is normalised for an average individual, and the estimated parameter VGlu1 

describes the fractional difference between the normalised total volume of 

RBCs and the apparent volume of distribution of MTXGlu1. 

CLGlu1 was associated with a small value for BSV (8.1%) and large 

shrinkage (88.8%) in the base model. Removing BSV for this parameter from 

the model decreased the OFV by an additional –1.81. Therefore, BSV on CLGlu1 

was not included in the final model for MTXGlu1. 
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Figure 5.3 shows the goodness of fit plot of the observations versus the 

individual predictions. -shrinkage was found to be 8.9% (see Table 5.3) [193]. 

Good agreement between observations and predictions is achieved for the 

lower concentration range (<80 nmol/L), while higher concentrations show a 

larger deviation from the line of identity. However, no systematic trend of 

model misspecification is observed in the goodness of fit plots and the 

individual weighted residual plots (not shown). 

 

 

Figure 5.3: Goodness of fit plot for the final parent model for MTXGlu1: Observations 

(dependent variable DV) versus individual predictions (IPRED). 
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Individual fits obtained from the final model for six patients representing 

the typical profiles seen in the data set are given in Figure 5.4, while the fit for 

all individuals is shown in Appendix A.5.3. The model is able to capture the 

trend in the data for all individuals.  

 

Figure 5.4: Individual fits for six patients (ID) representing the typical profiles seen in 

the data set obtained with the final parent model for MTXGlu1. Left panels starters 

(ID32 & ID34), middle panels stoppers (ID38 & ID40), right panels patients on 

continuous treatment (ID15 & ID25). Blue dots: observations, red line: individual 

prediction, grey line: population mean prediction. 

 

The non-parametric bootstrap results for the final parent model are also 

presented in Table 5.3. The median and the 95% confidence interval for all 

parameters were calculated based on 1126 runs that minimised successfully out 

of a total of 2000 runs (success rate 56.3%). The median values are in close 

agreement with the population mean estimates for all parameters. 
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5.5.2. Parent-metabolite model for MTXGluX in RBCs 

As previously mentioned, convergence issues became apparent during 

the structural development of the parent-metabolite model, and the full model 

was found not to be globally identifiable. It was therefore necessary to simplify 

the model by fixing structural parameters to achieve successful convergence 

and stability. In the following section the results for the final reduced model 

will be presented. 

5.5.2.1.1. Structural model development, Stability & Sensitivity analysis 

Stability of the parent-metabolite model was achieved by fixing all 

volume of distribution parameters (VGluX) and polyglutamation rate constants 

kFPGS1-4. Any arbitrary value could be chosen for these fixed values; however 

meaningful values are desirable that are either based on prior knowledge from 

literature or previous analyses. The volume of distribution parameters were 

therefore fixed to 0.3 L, the rounded value estimated for VGlu1 in the parent 

model, while the polyglutamation rate constants were fixed to values reported 

by Morrison and Allegra in 1987 [8] based on in vitro experiments in human 

breast cancer cells, where a similar catenary compartment model was used for 

data analysis (Table 5.4). 

Table 5.4: Fixed parameter values in the reduced parent-metabolite model. 

Parameter VGluX a kFPGS1 b kFPGS2 b kFPGS3 b kFPGS4 
b 

Value 0.3 L 0.171 hr-1 0.344 hr-1 0.097 hr-1 0.141 hr-1 

a Fixed based on the mean population estimate for the parent drug MTXGlu1 only. 
b Fixed based on Model I published by Morrison and Allegra, 1987 [8]. 

 

BSV was supported in the reduced model on the structural parameters kin, 

CLGlu1, VGlu1, VGlu2, VGlu5, and kGH3-5, but not on VGlu3&4, kFPGS1-4 or kGH2. The 

combined error model was retained for all MTXGluX to describe RUV. 

The parameter estimates for the basic reduced parent-metabolite model 

using the M6 method to handle BLQ data and the results for the sensitivity 

analysis are provided in Table 5.6. The model was found to be sensitive to all 
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estimated parameters. Sensitivity was the lowest for BSV on kGH5 using a 10% 

in the estimated parameter value, but increased when a 25% change was 

considered.  

Repeating the estimation for the best structural parent-metabolite model 

using the M3 method did not change the parameter estimates significantly, and 

the M6 method was used again for the subsequent analyses due to its 

considerably shorter run times. 

5.5.2.1.2. Covariate analysis 

Based on the reduced parent-metabolite model, the significance of the 

covariates MCV, [Hb] and LBW on the volume of distribution parameters VGluX 

was reassessed. Table 5.5 provides the corresponding OFV all covariate 

combinations tested. 

Table 5.5: Reassessment of covariates on VGluX. 

Covariates on VGluX OFV change in OFV 

none 15438.69  

MCV, LBW & [Hb] 15476.49 37.8 

MCV & LBW 15433.09 -5.6 

MCV & [Hb] 15473.82 35.13 

MCV 15430.96 -7.73 

LBW & [Hb] 15467.05 28.36 

LBW 15441.30 2.61 

[Hb] 15463.74 25.05 

 

Based on these results, only MCV was included as covariate on VGluX in 

the final reduced parent-metabolite model. Table 5.7 shows the parameter 

estimates for the corresponding final reduced parent-metabolite model. The 

NONMEM code for the final reduced parent-metabolite model is given in 

Appendix A.5.4. 
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Table 5.6: Parameter estimates and sensitivity analysis for the basic reduced parent-

metabolite model without covariates on VGluX. 

Parameter Estimate OFV S NSI 

OFV 15438.69 δ = 1.1 

kin [hr-1] 2.21 x 10-4 0.73 32895.33 4.70 x 10-4 

CLGlu1 [L/hr] 1.45 x 10-3 0.79 5481.99 5.14 x 10-4 

kGH2 [hr-1] 0.1736 2.31 133.18 1.50 x 10-3 

kGH3 [hr-1] 0.1915 1.28 66.73 8.28 x 10-4 

kGH4 [hr-1] 0.2426 2.25 92.72 1.46 x 10-3 

kGH5 [hr-1] 0.2984 1.08 36.33 7.02 x 10-4 

BSV kin 0.5122 0.16 3.14 1.04 x 10-4 

BSV CLGlu1 0.4111 0.13 3.19 8.49 x 10-5 

BSV VGlu1 0.1058 0.06 5.86 4.02 x 10-5 

BSV VGlu2 0.1005 0.06 5.67 3.69 x 10-5 

BSV VGlu5 0.2296 0.09 3.79 5.64 x 10-5 

BSV kGH3 0.2832 0.14 5.01 9.20 x 10-5 

BSV kGH4 0.1737 0.18 10.31 1.16 x 10-4 

BSV kGH5 0.0625 7.00 x 10-3 1.12 4.53 x 10-6 

CV2prop Glu1 0.0346 0.57 165.66 3.71 x 10-4 

2add Glu1 35.34 1.10 0.31 7.14 x 10-4 

CV2prop Glu2 0.0460 1.44 313.83 9.35 x 10-4 

2add Glu2 7.32 0.32 0.44 2.09 x 10-4 

CV2prop Glu3 0.0142 0.71 500.20 4.60 x 10-4 

2add Glu3 39.15 1.10 0.28 7.11 x 10-4 

CV2prop Glu4 0.0641 1.51 234.95 9.75 x 10-4 

2add Glu4 3.78 0.29 0.76 1.87 x 10-4 

CV2prop Glu5 0.0771 0.97 125.35 6.26 x 10-4 

2add Glu5 2.28 0.14 0.63 9.39 x 10-5 

  δ = 0.9 

BSV kGH5 0.0625 8.00 x 10-3 -1.28 -5.18 x 10-6 

  δ = 1.25 

BSV kGH5 0.0625 0.04 2.82 1.14 x 10-5 

  δ = 0.75 

BSV kGH5 0.0625 0.05 -3.14 -1.27 x 10-5 
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Table 5.7: Parameter estimates for the final reduced parent-metabolite model and bootstrap (BS) results with MCV as covariate on VGluX. 

Parameter Estimate Shrinkage [%] a Mean (BS) b 
Empirical standard 

deviation (BS) b 
Asymptotic empirical  

95% CI (BS) b,c 

kin [hr-1] 2.27 x 10-4 - 2.31 x 10-4 2.43 x 10-5 1.83 x 10-4 – 2.79 x 10-4 

CLGlu1 [L/hr] 1.48 x 10-3 - 1.54 x 10-3 2.03 x 10-4 1.14 x 10-3 – 1.93 x 10-3 

VGlu1 [L] 0.3 fixed - - - - 

VGlu2 [L] 0.3 fixed - - - - 

VGlu3 [L] 0.3 fixed - - - - 

VGlu4 [L] 0.3 fixed - - - - 

VGlu5 [L] 0.3 fixed - - - - 

kFPGS1 [hr-1] 0.171 fixed - - - - 

kFPGS2 [hr-1] 0.344 fixed - - - - 

kFPGS3 [hr-1] 0.097 fixed - - - - 

kFPGS4 [hr-1] 0.141 fixed - - - - 

kGH2 [hr-1] 0.174 - 0.173 9.33 x 10-3 0.155 – 0.191 

kGH3 [hr-1] 0.192 - 0.190 0.0154 0.159 – 0.220 

kGH4 [hr-1] 0.243 - 0.243 0.0151 0.213 – 0.272 

kGH5 [hr-1] 0.299 - 0.301 0.0202 0.262 – 0.341 

BSV kin [%] 69.4 10.0 68.1 9.1 51.8 – 87.9 

BSV CLGlu1 [%] 63.4 14.1 61.8 10.5 43.2 – 85.9 
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Table 5.7: Continued. 

Parameter Estimate Shrinkage [%] a Mean (BS) b 
Empirical standard 

deviation (BS) b 
Asymptotic empirical  

95% CI (BS) b,c 

BSV VGlu1 [%] 31.8 27.5 31.0 6.5 19.5 – 47.0 

BSV VGlu2 [%] 32.3 25.1 30.5 13.5 5.65 – 115.4 

BSV VGlu5 [%] 48.2 24.1 41.4 12.8 8.79 – 151.8 

BSV kGH3 [%] 53.3 8.8 51.2 5.2 41.4 – 62.6 

BSV kGH4 [%] 41.7 4.5 40.5 4.6 32.2 – 50.3 

BSV kGH5 [%] 24.3 61.6 28.9 16.7 0.49 – 484.9 

CVprop Glu1 [%] 18.3 
3.7 

16.6 4.10 13.7 – 22.2 

add Glu1[nmol/L] 5.96 6.17 0.60 4.82 – 7.44 

CVprop Glu2 [%] 21.5 
4.0 

21.1 2.42 16.1 – 25.9 

add Glu2[nmol/L] 2.69 2.75 0.43 1.93 – 3.67 

CVprop Glu3 [%] 11.8 
4.0 

11.6 1.42 9.59 – 14.6 

add Glu3[nmol/L] 6.29 6.43 0.65 4.82 – 7.59 

CVprop Glu4 [%] 25.4 
3.7 

25.9 3.09 18.8 – 31.9 

add Glu4[nmol/L] 1.95 2.05 0.29 1.44 – 2.54 

CVprop Glu5 [%] 27.9 
3.9 

27.6 3.47 20.3 – 33.7 

add Glu5[nmol/L] 1.50 1.31 0.64 0.23 – 2.51 

a -shrinkage given for BSV parameters, -shrinkage for each MTXGluX given together with the corresponding RUV parameters CVprop and add GluX. 
b Non-parametric bootstrap statistics based on 100 runs with successful minimisation out of 400 runs. 
c Asymptotic empirical 95% confidence interval (CI) constructed based on mean and empirical standard deviation of the 100 successful BS runs. 
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5.5.2.1.3. Model evaluation 

Goodness of fit plots for all five MTXGluX are shown in Figure 5.5. As 

was seen for the parent drug, good agreement between observations and 

individual predictions is achieved for the lower concentrations, while higher 

concentrations show a somewhat larger deviation from the line of identity. 

However, no systematic model misspecification is seen in these plots. For all 

five MTXGluX, -shrinkage was 4% (see Table 5.7) [193]. 

 

 

Figure 5.5: Goodness of fit plots for all five MTXGluX obtained with the final reduced 

parent-metabolite model. Observations (DV) versus individual predictions (IPRED). 

 
 

following page: 

Figure 5.6: Individual fits for all five MTXGluX obtained with the final reduced 

parent-metabolite model for six patients: ID32 & ID34 starters, ID38 & ID40 stoppers, 

ID15 & ID25 patients on continuous treatment. Blue dots: observations, red line: 

individual prediction, grey line: population mean prediction.  
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Figure 5.6 shows the individual fits obtained from the final reduced 

parent-metabolite model in the same six patients as were shown for the parent 

model. It can be seen in these plots that long chain MTXPGs (MTXGlu4 and 

MTXGlu5) are not measurable in some individuals, e.g. ID15, ID34 and ID38 in 

this figure. The fits for all patients are shown in Appendix A.5.5. The final 

parent-metabolite model shows reasonably good agreement with the data for 

all MTXGluX and in all individuals. However, there remains unexplained 

variability in some individuals (note for example ID25 where it appears that 

there was some period of non-compliance around week 30); yet it was not 

possible to elucidate either a mechanism or clinical reason for this.  

The bootstrap results for the final reduced parent-metabolite model are 

also provided in Table 5.7. Out of the 400 conducted runs 100 minimized 

successfully (success rate 25%). The mean parameter values p  and empirical 

standard deviations s of these 100 runs were calculated and used to construct 

the empirical asymptotic empirical 95% confidence interval (CI) according to:  

sp  96.1CI %95  

Equation 5.8: Formula to calculate the upper and lower bound of the asymptotic 

empirical 95% confidence interval (CI) of the bootstrap parameter estimates, with an 

-error level of 0.05. 

Good agreement between the estimates for the final model and the 

bootstrap results is seen, although several of the random effect parameters in 

the final model fall slightly outside of the 95% confidence interval, e.g. BSV on 

VGlu4&5 and the deglutamation rate constant kGH5. 
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5.5.3. Model assessment 

5.5.3.1. Predictive performance of the final parent-metabolite model 

In the original analysis of the data in the oral study by Dalrymple et al. 

[186] the authors calculated the time to reach steady state in all five MTXGluX 

(Table 5.8). Their calculations were based on the estimated half-life of 

accumulation that was determined using a monoexponential accumulation 

model for each patient starting MTX treatment in the study. They defined the 

time to reach steady state as the time that was required to achieve 90% of the 

maximum concentration observed in each individual.  

Table 5.8: Calculated time to reach 90% of the steady state concentration for 

MTXGluX in the study by Dalrymple et al. [186]. 

Time to reach steady state Median [weeks] Range [weeks] 

MTXGlu1 6.2 0.0 – 13.9 

MTXGlu2 10.6 7.0 – 77.2 

MTXGlu3 41.2 19.8 – 66.7 

MTXGlu4 149 16.2 – 831.6 

MTXGlu5 139.8 15.5 – 264.0 

 

Using the population estimates for the final parent-metabolite model, the 

RBC MTXGluX kinetics for a typical patient on a stable oral dose of 10 mg MTX 

per week were simulated over a period of two years. The time to reach 90% of 

the steady state concentration and true steady state in all MTXGluX was 

calculated from the simulated data for comparison. In this analysis the time to 

reach 90% of the true steady state concentration did not differ between the 

MTXGluX. It was found to be 14 weeks for all, while true steady state 

concentrations were observed after 45, 60, 63, 57 and 70 weeks for MTXGlu1 to 

MTXGlu5, respectively. These values notably exceed the postulated average 

lifespan of RBCs of 120 days or approximately 17 weeks. 

The ratios between the measured concentrations of the individual 

MTXPGs and MTXGlu1 were also computed at each sampling time point in 
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this simulation and are shown together with the true steady state 

concentrations for each MTXGluX in Table 5.9. The ratios were found to be 

stable throughout the entire simulation time course with only a marginal 

fluctuation of 0.001 nmol/L. 

Table 5.9: Ratios of individual MTXGluX concentrations and true steady state 

concentration ([nmol/L]) for an average individual. 

 MTXGlu1 MTXGlu2 MTXGlu3 MTXGlu4 MTXGlu5 

ratio 1 1.007 1.824 0.734 0.348 

[nmol/L] 14.38 14.49 26.23 10.56 5.00 

 

As can be seen from Table 5.9 the intracellular RBC concentrations of 

MTXGlu1 and MTXGlu2 are fairly similar, while MTXGlu3 is the most 

abundant metabolite in the RBCs. The long chain polyglutamates MTXGlu4 

and MTXGlu5 have a lower relative concentration compared to the parent 

drug, with MTXGlu5 being the least abundant metabolite. Furthermore, the 

true steady state concentration of MTXGlu5 in an average individual on a 

stable dose of 10 mg MTX once weekly is just 5.0 nmol/L, which is equivalent 

to the LOQ of the analytical MTXGluX assay. This explains why MTXGlu5 was 

not detectable in a number of patients in this study. 

5.5.3.2. Comparison of MTX kinetics in RBCs with the kinetics observed in 

other cell lines 

5.5.3.2.1. RBC kinetics versus in vitro kinetics in human breast cancer cells 

Morrison and Allegra [8] used a similar catenary model to describe the in 

vitro kinetics of MTX in human breast cancer cells. They estimated naïve pooled 

parameter values for the polyglutamation and deglutamation steps. Here, the 

rate constants determined for the polyglutamation steps were used as fixed 

values for kFPGS1-4. It is therefore possible to directly compare the 

deglutamation rate constants estimated for the RBC kinetics (kGH2-5) with the 

corresponding values published by these authors (Table 5.10):  
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Table 5.10: Comparison of deglutamation rate constants [hr-1] observed in vitro by 

Morrison and Allegra [8] for human breast cancer cells and estimated for RBCs in this 

work based on the final parent-metabolite (PM) model. 

Source kGH2 kGH3 kGH4 kGH5 

Morrison & Allegra  0.637 0.114 0.065 0.122 

Final PM model 0.174 0.192 0.243 0.299 

 

As can be seen from this table there is a relative difference in the rate 

constants between cancer cells and RBCs. The observed deglutamation rates are 

two to four times faster in RBCs than in the breast cancer cells for all reaction 

steps other than the last step from MTXGlu2 to MTXGlu1, which Morrison and 

Allegra found to be much faster than was estimated here for RBCs. In addition, 

using both the published rate constant values for poly- as well as 

deglutamation and estimating the volume of distribution terms in the parent-

metabolite model was examined, but did not provide a satisfactory fit to the 

RBC data. Thus, MTXGluX kinetics in RBCs seem to differ considerably from 

those observed in the cancer cell line. 

However, direct comparison of these results is difficult. Morrison and 

Allegra also accounted for binding of MTXGluX to DHFR, which is not 

incorporated here in the RBC parent-metabolite model, and they used 

Michaelis-Menten kinetics to describe the active uptake of MTXGlu1 into the 

cells. In addition, the MTXGluX concentrations measured in the cancer cell 

experiments are much higher than in RBCs (μmol/L rather than nmol/L).  

5.5.3.2.2. RBC kinetics versus in vivo kinetics in lymphocytes 

Panetta et al. [90] developed a model for the in vivo accumulation of 

MTXPGs in acute lymphoblastic leukaemia, were patients receive a high dose 

regimen of MTX (0.25 – 8 g/m2 body surface area as intravenous infusion over 

24 hours). MTXGluX concentrations in their study were measured in T-

lymphocytes as well as B-lymphocytes, and were found to considerably exceed 

RBC concentrations as well (again μmol/L rather than nmol/L). Their final 
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model included only two intracellular compartments, one for MTXGlu1 and 

the other comprising all metabolites, i.e. the sum of the measured MTXGlu2 to 

MTXGlu5 concentrations. Active and passive uptake into the cells was 

incorporated in the model, where the rate constant for the passive uptake was 

fixed and only the active component was estimated based on Michaelis-Menten 

kinetics. Efflux was considered to occur only for MTXGlu1 and described by 

first-order kinetics. The polyglutamation step was estimated as active process, 

while the deglutamation reaction was assumed to follow first-order kinetics.  

Due to these major differences between the Panetta model and the RBC 

model developed here, a direct comparison is not possible. However, during 

the initial model development of the RBC model, the model structure used by 

Panetta et al. was also considered. For this, the MTXGlu2 – MTXGlu5 

concentrations in RBCs were summed to describe the cumulative concentration 

of MTXPGs in the second intracellular compartment. Yet, it was impossible to 

apply this model structure successfully to the RBC data in NONMEM. The 

program terminated due to integration errors when the full data set was used, 

while successful minimisation could only be achieved for a data set containing 

only the patients on continuous MTX treatment, e.g. the steady state data in the 

RBC study. This model structure seems incapable of adequately describing the 

accumulation and disappearance kinetics of MTXGlu1 and MTXPGs inside and 

from RBCs, which leads to the conclusion that the kinetic profiles observed in 

RBCs must differ considerably from those observed by Panetta et al. in 

lymphocytes.  
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5.6. Discussion 

In this chapter, previously published data of MTXGluX concentrations 

measured in RBCs were used to develop an empirical population parent-

metabolite model for low-dose MTX treatment in RA using a top-down 

modelling approach. The model was developed in the style of a classical 

compartmental PK analysis with only loose guidance based on mechanistic 

principles. 

5.6.1. Parent model for MTXGlu1 in RBCs 

Initially, a model for the parent drug MTXGlu1 only was developed. The 

model described the data very well, and good agreement between the final 

parameter estimates and the bootstrap results were found.  

Plasma concentrations for MTXGlu1 were predicted based on a 

previously published model. Only population mean parameter values could be 

used for this prediction which does not allow for variability in the plasma PK. 

The PK inside RBCs was then described by adding an additional compartment 

to the plasma PK model. The RBC compartment is not assumed to be in mass 

balance with the plasma PK model, similar to an effect compartment in a 

delayed effect PKPD model. This assumption is justified, as the rate constant of 

uptake into RBCs kin is only 1.35 x 10-4 hr-1 compared to the rate of elimination 

from the plasma, kel = V1/CL1 = 9.6 L / 8.4 Lhr-1 = 1.14 hr-1. Due to this almost 

10,000 fold difference, the uptake of MTXGlu1 into RBCs has only a marginal 

influence on the plasma concentration and can be neglected in mass balance. 

However, the BSV parameter on kin is likely inflated as it also takes into account 

the lack of variability in the predicted plasma concentrations, and it is possible 

that kin is biased itself. In future studies, measuring MTX plasma concentrations 

in addition to RBC concentrations would be valuable to obtain a better estimate 

of kin and its BSV. 

Although the uptake of MTX into cells is facilitated by an active transport 

via the reduced folate carrier, it was assumed to follow first-order kinetics in 

this analysis. This approximation is justified as the peak MTX plasma 
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concentrations (Cmax) under low-dose treatment are well below the reported Km 

value for the transporter (Cmax = 700 nmol/L for a 20 mg sc dose of MTX which 

is the highest dose in this study, compared to Km values between 3,900 and 

8,200 nmol/L reported for various tumour cell lines [93]). In addition, active 

transport into RBCs was considered during initial model development but did 

not provide a better fit to the data than the simpler model assuming first-order 

kinetics. 

LBW, MCV and [Hb] were found in combination to yield a significant 

covariate on VGlu1 and it was shown that these covariates are also 

physiologically plausible. As LBW already takes into account structural 

differences in body composition between males and females no additional 

gender difference in the median [Hb] value used for normalisation was 

supported in this analysis.  

CLGlu1 in the parent model accounts for elimination of MTXGlu1 from the 

cells as well as metabolism to MTXGlu2. BSV on this composite parameter was 

not supported in the final model. In addition, the input of MTXGlu1 via the 

deglutamation of MTXGlu2 into the RBC compartment cannot be quantified in 

the parent model, which potentially leads to bias in the structural parameter 

estimates. 

5.6.2. Parent-metabolite model for MTXGluX in RBCs 

The final reduced parent-metabolite model for MTXGluX kinetics in RBCs 

is able to describe the observed data; however the model development process 

was hampered by identifiability issues with the full parent-metabolite model. 

The catenary structure of the model and the high number of estimated 

parameters results in a highly flexible model with multiple solutions and hence 

lack of consistent convergence. Fixing of several structural parameters was 

required to ensure local identifiability of the model. The apparent volume of 

distribution of all MTXGluX (VGluX) was set to the rounded value that was 

estimated in the parent model, while the polyglutamation rate constants 

(kFPGS1-4) were fixed to literature values. Any arbitrary values could have been 
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chosen and the estimated parameters for the deglutamation steps would have 

changed accordingly; however the chosen values allow for a comparison of the 

results with the parent model as well as the previous model published by 

Morrison and Allegra [8]. Nevertheless, the estimated values in the final 

reduced parent-metabolite model do not have any direct physiological 

meaning as the true values for the polyglutamation rate constants (kFPGS1-4) and 

VGluX in RBCs are unknown.  

All processes in this model were assumed to follow first-order kinetics, 

although the poly- as well as deglutamation reactions are catalysed by FPGS 

and GH, respectively, and the uptake and loss of MTXGlu1 are facilitated by 

active transport. Yet, the MTXGluX concentrations measured inside RBCs are 

well below the Km values for all these enzymes and the transporter and the 

first-order approximation is therefore assumed to be valid. This approximation 

also allows using the ADVAN5 subroutine in NONMEM, which reduced the 

run times considerably.  

Model development was conducted using the M6 method to handle BLQ 

data and the final reduced parent-metabolite model was then re-analysed with 

the M3 method. The use of M3 did not result in a significant change in the final 

estimates for the parent-metabolite model, despite the large percentage of data 

reported as BLQ especially for the long chain MTXPGs. However, as BLQ data 

was not distinguished from data below the limit of detection in the data set, the 

actual percentage of BLQ data could be much less. In addition, the performance 

of the different methods to handle BLQ data has been assessed for classic 

mammillary compartmental models [189,194-196], yet not for a catenary model 

structure, and especially not in a situation where reversible formation of 

metabolites occurs and where a large number of parameters are fixed a priori. It 

is therefore unknown what differences in performance are to be expected. 

At each time of observation all MTXGluX concentrations were measured 

in a single blood sample. This means that a correlation in the residual error 

between these measurements is expected, for example as the process noise 

introduced during sample taking and handling will be the same. In 
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NONMEM such a correlation is usually accounted for by using the L2 data 

item function. However, the L2 function requires RUV parameters to be coded 

as random effects (i.e. as EPSILONs), while the M3 method to handle BLQ data 

requires these parameters to be coded equivalent to fixed effect parameters (i.e. 

as THETAs). To account for error correlation between the individual MTXGluX 

measurements within a blood sample while using the M3 method, a covariance 

between the fixed effect parameters that describe RUV would need to be 

included in the code. Yet, this is very difficult to implement in NONMEM for 

fixed effect parameters, especially if they are not associated with random 

effects (i.e. when they do not have a corresponding $OMEGA BLOCK in 

NONMEM). As this analysis did not aim to quantify the magnitude of the 

error correlation and the ability of using the M3 method to handle BLQ data 

was regarded as having a higher priority, such a complex coding procedure 

was not explored here. For simplification it was instead assumed that the RUV 

of the different MTXGluX are independent. However, if future studies confirm 

that using the M3 method for handling BLQ data has truly no benefit compared 

to simpler methods under the current model structure, the L2 data item 

function should be used in future work. 

The final parent-metabolite model was evaluated using non-parametric 

bootstrap. Due to the long run times only 400 bootstrap runs were conducted 

and the success rate was only 25%. The main reason for unsuccessful 

minimisation in NONMEM was rounding errors in the parameter estimates. 

As only 100 successful bootstrap runs were available for analysis, the means 

instead of the medians of the parameter estimates were calculated and the 

standard deviations were used to construct the asymptotic empirical 95% 

confidence intervals around the mean estimates. These results showed 

reasonable good agreement with the final estimates for the original data set. 

Comparing the parameter estimates for MTXGlu1 with those obtained 

with the parent model, it can be seen that the structural parameters CLGlu1 and 

kin both have increased. BSV on CLGlu1 was supported in the final parent-

metabolite model, yet not in the parent model. BSV on VGlu1 dropped 
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considerably from >100% in the parent model to 32% in the parent-metabolite 

model, while BSV on kin increased only slightly. The proportional error 

component was approximately the same (18% versus 20%), yet the additive 

error increased from 3.58 nmol/L to 5.96 nmol/L in the parent-metabolite 

model. This is also reflected by a less good fit observed for MTXGlu1 to the 

individual data as was obtained in the parent model only, especially when 

looking at the elimination of MTX in the stoppers, e.g. ID38 and ID40 in Figure 

5.4 and Figure 5.6. 

In the final parent-metabolite model only MCV retained a significant 

effect as covariate on all VGluX. This is in contrast to the parent model were 

MCV, LBW and [Hb] had a significant effect on the apparent volume of 

distribution. It is possible that fixing the population mean value for VGluX 

impedes the covariate analysis in the parent-metabolite model, especially as 

BSV was also only found to be significant on three of the five volume of 

distribution parameters (VGlu1, VGlu2 and VGlu5).  

5.6.3. Model assessment 

The final parent-metabolite model was assessed based on simulations. 

The time required to reach 90% of the true steady state concentration for an 

average individual was compared to the analysis conducted by Dalrymple et al. 

[186] on a subset of the same data set. These authors found the required time to 

be highly variable between different individuals and also between the 

individual MTXGluX, with median values well above 100 weeks for MTXGlu4 

and MTXGlu5. In contrast, the population analysis conducted here led to an 

equal time to reach 90% steady state of all MTXGluX which was found to be 

just 14 weeks due to interdependence between the metabolites. The time to 

reach true steady state on the other hand varied between the different 

MTXGluX: 45 – 70 weeks. These values correspond to 315 to 490 days and are 

much longer than any of the values reported for the average RBCs lifespan in 

humans. It is therefore impossible for this accumulation to occur within a single 

RBC during its circulation in the body. It is more likely that the actual 
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accumulation takes part in the stem cells and/or RBC precursor cells in the 

bone marrow and that over time reticulocytes with increasing MTX content are 

released into the circulation until steady state is achieved in the bone marrow 

cell populations. This theory is in accordance with suggestions by Schalhorn et 

al. [197]. In their study, MTX concentrations in RBCs declined for 

approximately 24 - 48 hours after administration of a 6 hour infusion of high-

dose MTX, but the concentrations started to rise again after day 4 - 7. They 

attributed this second increase in RBC MTX concentrations to the release of 

young RBCs that were preloaded with MTX and its metabolites during their 

production in the bone marrow.  

It should be noted that if MTX accumulation truly takes place on the level 

of pluripotent stem cells in the bone marrow, then long-lasting post MTX 

treatment consequences on fertility might be expected if a similar long-term 

accumulation also takes place in gametocytes. In this case, a MTX free interval 

prior to conception that is longer than the three to six months that are currently 

recommended by manufacturers would be appropriate. This was also 

suggested in a review of clinical studies on the effect of MTX on pregnancy and 

fertility by Lloyd et al. [198]. Nevertheless, further clinical studies are required 

to determine whether MTX accumulates in bone morrow precursor cells after 

their commitment to form a specific blood cell line or on the stage of 

pluripotent stem cells, and also in gametocytes.  

Nevertheless, the kinetics observed in RBCs were found to differ from 

those observed in other cell lines. The rate constants for deglutamation in the 

final parent-metabolite models do not match with those obtained by Morrison 

and Allegra [8] for human breast cancer cells in vitro, and the structural model 

developed for leukocytes by Panetta et al. [90] is not able to adequately describe 

the concentration-time course in RBCs observed during the elimination of MTX 

in the starters and stoppers. These differences can be explained by the limited 

enzyme capacity in RBCs compared to nucleated cells as well as the inability of 

RBCs to perform mitosis. These physiological disparities are likely to result in 

altered intracellular MTX kinetics in RBCs compared to other cell lines. 
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Overall, these findings lead to the conclusion that the MTX kinetics 

observed in RBCs differ considerably from the kinetics observed in other cell 

lines, and do not to reflect the concentration-time profile of MTX in a single 

RBC, but rather a cross-section of the concentration in RBCs of different ages in 

a random blood sample.  

5.6.4. Further analyses and hypotheses testing 

The developed parent-metabolite model for MTX in RBCs can provide a 

basis to test further hypotheses. For example, in the following chapter of this 

thesis, alternative structural models will be evaluated which if supported 

would provide insight into alternative mechanisms of MTX accumulation in 

RBCs.  

Literature suggests that GH is able to cleave two moieties of glutamate at 

a time [97,199]. This alternate cleaving mechanism can be incorporated into the 

structural model in a future analysis despite the need to fix kFPGS1-4 and VGluX. 

Furthermore, loss of MTXPGs can also be incorporated into the structural 

model as was done by Morrison and Allegra [8]. If supported, such a loss could 

either be attributed to the destruction of RBCs or active transport of MTXPGs 

out of the cells.  

In addition, genotypic covariates can be incorporated in to the model and 

tested for significance. PK relevant polymorphisms have been reported for GH 

as well as the influx and efflux transporters of MTX [200,201]. However, the 

clinical relevance of pharmacogenetic covariates for MTX has not yet been 

established conclusively [106]. The developed parent-metabolite model can be 

used to test whether covariates that possibly affect the intracellular PK of MTX 

show a significant effect. 

Lastly, this PK model can form the basis for a full PKPD model in future 

work which can then be used to test the suitability of MTXGluX concentrations 

measured in RBCs as biomarker for monitoring of low-dose MTX treatment in 

RA. Yet, any possible association between PD outcomes and RBC 

concentrations has to be seen in the light of the unique PK profile observed in 
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RBCs and the lack of a causal relationship as RBCs are not on the postulated 

pathway of action of MTX.  

5.7. Conclusion 

This is the first time that the PK of MTX and its polyglutamated 

metabolites in RBCs has been described in a population modelling analysis. 

Although identifiability issues occurred during the model development 

process, a stable parent-metabolite model could be developed by fixing selected 

parameter values. The resulting reduced model is able to describe the observed 

data and can be used for further hypotheses testing before being applied in a 

full PKPD model of low-dose MTX in the treatment of RA in the future. 

It is notable that the kinetics of MTX measured in RBC differ considerably 

from the kinetics in other cell lines and likely represent a cross-section of RBC 

with different MTX concentrations over time rather than the intracellular 

kinetics within an individual RBC. 

Future work is required to assess in more detail the encountered 

identifiability issues and the mathematical features of catenary models in 

general. 
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This chapter will be part of a publication that will be submitted as:  

Korell J, Stamp L, Duffull S et al. (2012) A population pharmacokinetic model for 

methotrexate measured in red blood cells.  
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6.1. Synopsis of the Chapter 

In the previous chapter, a population pharmacokinetic (PK) model for 

methotrexate (MTX) and its polyglutamated metabolites (MTXPGs) measured 

in red blood cells (RBCs) was developed. In this chapter several hypotheses 

related to the intracellular PK of MTX will be tested based on this model, and 

the model will be updated as required based on the results. 

6.2. Introduction 

In the following section four different hypothesis tests are described that 

are related to the intracellular PK of MTX in RBCs. The first two hypothesis 

tests are with respect to the structure of the model. They concern the observed 

deglutamation mechanism and a potential loss of MTXPGs from RBCs. The 

third and fourth hypothesis tests consider the influence of covariates, genotypic 

as well as phenotypic, on the PK of MTX in RBCs and in the plasma. 

6.2.1. Hypothesis test 1: Cleaving mechanism of -glutamyl hydrolase 

The intracellular metabolism of MTX involves two enzymes: 

folylpolyglutamate synthetase (FPGS) and -glutamyl hydrolase (GH). FPGS 

adds additional glutamate moieties to MTX in a stepwise manner resulting in 

MTXPGs, i.e. MTXGlu2 to MTXGlu5. Here, MTXGluX stands for a specific 

polyglutamated metabolite containing a total of X glutamate moieties in the 

molecule. GH removes terminal glutamate moieties from these metabolites. 

For the development of the original population PK model for MTXGluX in the 

previous chapter it was assumed that GH cleaves one moiety of glutamate at a 

time. Yet, in vitro experiments by Rhee et al. [97] suggest that the enzyme is able 

to cleave two terminal glutamate moieties simultaneously and that this 

cleaving mechanism might in fact be preferred.  
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This leads to four alternative hypotheses on the structural model for the 

intracellular PK of MTX: 

1) GH cleaves only one terminal glutamate moiety as assumed in the 

original model (Model A). 

2) GH cleaves only two terminal glutamate moieties, without 

conversion of MTXGlu2 to MTXGlu1 (Model B). 

3) GH preferentially cleaves two terminal glutamate moieties, but 

allows for the conversion of MTXGlu2 to MTXGlu1 by cleaving one 

glutamate for this step (Model C). 

4) GH cleaves one and two terminal glutamate moieties (Model D). 

For a graphical representation of these hypotheses based on the proposed 

model please refer to Figure 6.1 in the corresponding Methods section (Section 

6.4.1). 

6.2.2. Hypothesis test 2: Loss of MTXPGs from RBCs 

The structure of the original model developed in the previous chapter 

only allows the parent drug MTXGlu1 to leave the cells. This assumption is 

supported by the findings by Zeng et al. [99] who showed that the transporters 

that facilitate the efflux of MTXGlu1 have very poor transport capacity for 

MTXPGs.  

Yet, Morrison and Allegra found in their modelling analysis of in vitro 

MTX PK data measured in human breast cancer cells that a model that accounts 

for loss of MTXGlu3, MTXGlu4 and MTXGlu5 (in the following referred to as 

MTXGlu3-5) from the cells provided a better fit to the data than a model that 

only allowed MTXGlu1 to leave the cells [8]. Loss of MTXGlu2 was assumed to 

occur as well in these experiments, but the corresponding rate constant of loss 

from the cell was not found to be identifiable in their model. The authors 

simplified their model further by using a single rate constant to describe the 

loss of MTXGlu3-5. These results suggest that MTXPGs are able to leave cancer 
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cells and it can be hypothesised that a similar efflux might also be possible in 

other cell lines such as RBCs. 

In addition, RBCs have a finite survival time. The removal of individual 

RBCs from the circulation at the end of their lifespan means that their MTX 

content is lost from the total RBC MTX pool in the circulation. If the same rate 

constant is able to describe the loss of all MTXPGs in the system, this loss might 

be attributed to RBC death rather than efflux of MTXPGs. 

These findings lead to three alternative hypotheses, each with two sub-

hypotheses (a & b), that will be tested against the original model in this 

chapter: 

1) All MTXGluX are lost from the cells, where the loss of all individual 

MTXGluX is described by: 

a. a different rate constant kout,GluX. 

b. the same rate constant kout,Glu1. 

2) Besides MTXGlu1, MTXGlu3-5 are lost from the cells (but not 

MTXGlu2), where the loss of MTXGlu3-5 is described by: 

a. a different rate constant kout,GluX. (This is a similar to 

Hypothesis 1a.) 

b. the same rate constant kout,Glu3-5, but which is different from 

kout,Glu1. 

This hypothesis follows the structure of the model developed my 

Morrison and Allegra [8]. 

3) Besides MTXGlu1, only the long chain MTXPGs (MTXGlu4&5) are 

lost from the cells, where the loss of MTXGlu4&5 is described by: 

a. a different rate constant kout,GluX. (This again is similar to 2a 

and 1a). 

b. the same rate constant kout,Glu4&5, but which is different from 

kout,Glu1. 
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A graphical representation of the proposed model structure including loss 

of all MTXGluX is provided in the corresponding Methods section (Figure 6.2, 

Section 6.4.2). 

6.2.3. Hypothesis test 3: Significance of genotypic covariates on MTXGluX 

PK in RBCs 

Recently, there has been an increasing interest in genotypic covariates that 

might be suitable to explain some of the large variability seen in MTXGluX 

concentrations and clinical outcomes of MTX treatment in rheumatoid arthritis 

(RA) [108]. A variety of candidate genes and polymorphisms have been 

identified within the MTX and folate pathway that are relevant to the PK 

and/or effect of MTX treatment. A number of studies report associations 

between individual polymorphisms and MTX efficacy, adverse effects and/or 

RBC MTXGluX concentrations. These were recently reviewed by Stamp and 

Roberts [106]. However, none of the investigated polymorphisms have been 

proven to be a suitable biomarker for MTX treatment so far. This is partially 

due to a lack of conclusive evidence from the association studies as replicate 

studies often fail to reproduce initially observed correlations between the 

polymorphisms and clinical outcomes of MTX treatment and/or RBC 

MTXGluX concentrations. For example, Dervieux et al. found a significant 

association between polymorphisms affecting the reduced folate carrier (RFC) 

and GH [114,200]. Yet, these findings could not be verified in a study by 

Stamp et al. [202]. 

Polymorphisms relevant to the intracellular PK of MTX have been 

reported for GH as well as the influx and efflux transporters including RFC 

and multi drug resistance transporters (MDRTs) of the ATP-binding cassette 

(ABC) family, respectively. These include single nucleotide polymorphisms 

(SNPs) as well as copy number variations (CNVs).  

A SNP occurs when a single nucleotide is exchanged in the DNA coding 

sequence of the corresponding gene. For example the SNP denoted rs1051266 

occurs in the gene SLC19A1, which codes RFC. Here, the guanine (G) in 
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position 80 is exchanged for an adenine (A), and the variant is therefore 

denoted as 80G>A. For each SNP two forms, commonly referred to as alleles, of 

the gene exist (e.g. for rs1051266 having either G or A in position 80), and these 

two different alleles give rise to three different genotypes: homozygous for 

allele 1 (e.g. GG = wildtype), homozygous for allele 2 (e.g. AA) or heterozygous 

(e.g. GA). 

A CNV occurs when the number of copies of an allele is altered, e.g. 

instead of having two alleles of a particular gene (one on each of the 

corresponding chromosomes), repetitions of the allele in one or both of the 

chromosomes occur. For example, the gene coding the enzyme GH has two 

alleles (denoted as allele 1 and allele 2) resulting from the SNP rs11545078 and 

multiple copies of both alleles can be present in the genome of an individual. 

Table 6.1 provides an overview of the genotypic information that was 

available for all but two patients (46 out of 48 patients) in the data set used for 

model building in Chapter 5. 

It can be hypothesised that these polymorphisms have an effect on RBC 

MTXGluX concentrations. This hypothesis will be tested for each 

polymorphism independently based on the developed population PK model 

for MTX in RBCs by including a covariate effect on the related PK parameter 

and testing for its significance as described in the corresponding Methods 

section (Section 6.4.3). For example, for rs1051266 the covariate effect will be 

included in the model on the rate of uptake into RBCs (kin) as this SNP affects 

the gene coding the influx transporter RFC. 
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Table 6.1: Polymorphisms relevant to intracellular MTX PK and their frequency in 

the study population (n = 46). A = adenine, C = cytosine, G = guanine, T = thymine. 

Gene SNP Variant Genotype Frequency (%) a 

-glutamyl hydrolase 

GH rs11545078 CNV allele 1   1 copy 

allele 1   2 copies 

allele 2   1 copy 

allele 2   2 copies 

100 

0 

91 

9 

Multi drug resistance transporters 

ABCC1 rs35592 CNV allele 1   1 copy 

allele 1   2 copies 

allele 2   1 copy 

allele 2   2 copies 

98 

2 

74 

26 

 rs3784862 CNV allele 1   1 copy 

allele 1   2 copies 

allele 2   1 copy 

allele 2   2 copies 

90 

10 

62 

38 

ABCG2  rs17731538 CNV allele 1   1 copy 

allele 1   2 copies 

allele 2   1 copy 

allele 2   2 copies 

98 

2 

74 

26 

ABCC2  rs4148396 CNV allele 1   1 copy 

allele 1   2 copies 

allele 2   1 copy 

allele 2   2 copies 

93 

7 

48 

52 

 rs2273697 1249G>A GG 

GA 

AA 

68 [55] 

28 [40] 

4 [5] 

ABCB1  rs1045642 3435C>T CC 

CT 

TT 

24 [20] 

43 [50] 

33 [30] 

Reduced folate carrier 

SLC19A1 rs1051266 80G>A GG 

GA 

AA 

37 [25] 

43 [55] 

20 [20] 

a  Frequency in the European population [in square brackets if available] obtained from:  

SNPedia: a wiki supporting personal genome annotation, interpretation and analysis 

(http://www.snpedia.com/index.php/SNPedia) [203], accessed on 17.04.2012. 
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6.2.4. Hypothesis test 4: Significance of phenotypic covariates to predict 

between subject variability in the plasma PK of MTX 

Lastly, the original RBC PK model developed in Chapter 5 is based on a 

fixed plasma PK model for MTX published by Hoekstra et al. [91]. The plasma 

PK parameters were fixed to the population mean estimates of Hoekstra et al. 

and no random effects on these parameters could be estimated during the 

model development process. This was due to a lack of plasma samples in the 

data set used for this analysis as well as the temporal delay between the 

sampling of RBC PK data and the plasma PK which did not allow recreating 

the plasma PK from the RBC data. Therefore, no within or between subject 

variability is accounted for in the plasma PK, although both types of variability 

are expected to be present. 

However, MTX is largely eliminated via the kidneys involving passive 

glomerular filtration (81%) as well as active secretion [86,112]. Reduced kidney 

function, i.e. decreased glomerular filtration rate (GFR), is therefore expected to 

result in a reduced renal clearance of MTX which in turn will result in higher 

MTX plasma concentrations and hence higher intracellular uptake of MTX. 

Differences in kidney function between individuals will therefore contribute to 

the between subject variability (BSV) observed in the MTX RBC concentrations, 

and this contribution can be predicted by including a suitable biomarker for 

kidney function as covariate on the plasma clearance parameter (CL1) in the 

developed model.  

In the data set used for model building the estimated glomerular filtration 

rate (eGFR) was available as a biomarker for kidney function as calculated 

according to the Modification of Diet in Renal Disease (MDRD) formula [204] 

This biomarker will be tested for its significance as a covariate on CL1 in the 

developed population PK model as described in the corresponding Methods 

section (Section 6.4.4).  
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6.3. Objectives 

The general objectives of this chapter were to assess the validity of these 

hypotheses based on the original population PK model for MTX in RBCs that 

was developed in the previous chapter, and to update the model as required 

based on the results.  

The following questions will be addressed specifically: 

1) What is the preferred cleaving mechanism of GH in RBCs? 

2) Are MTXPGs lost from RBCs, either via efflux or due to death of 

individual RBCs? 

3) Do genotypic covariates have significant effects on the intracellular 

PK of MTXGluX in RBCs? 

4) Can phenotypic covariates such as eGFR be used to include 

predictable BSV in the otherwise fixed plasma PK of MTX in the 

developed model? 

 

 

 

 

 

 

 

 

 

following page: 

Figure 6.1: Structural models tested to assess the preferred cleaving mechanism of 

GH. A Original model with cleaving of one glutamate moiety only, B simultaneous 

cleaving of two glutamate moieties without conversion of MTXGlu2 to MTXGlu1, C 

simultaneous cleaving of two glutamate moieties with conversion of MTXGlu2 to 

MTXGlu1, and D cleaving of one and two glutamate moieties possible.  
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6.4. Methods 

6.4.1. Hypothesis test 1: Cleaving mechanism of -glutamyl hydrolase 

To determine the preferred cleaving mechanism of GH, three alternative 

structural models were fitted to the data used for model development in 

Chapter 5. The alternative model structures together with the structure of the 

original model are shown in Figure 6.1. 

The same estimation procedure as described in the Methods section of 

Chapter 5 (Section 5.4.3) was applied here, using the FOCE method with 

interaction in NONMEM 7.2 and the M6 method to handle data below the 

limit of quantification. 

It was assessed whether any of these models provide a better fit than the 

original model based on Akaike’s Information Criterion (AIC) for non-nested 

models (the lower the AIC value the better) and the likelihood ratio test (LRT) 

for nested models. For the addition of one parameter in the model (one 

additional degree of freedom) the LRT requires a decrease in the OFV of at 

least -3.84 to be statistically significant at an -error level of 5%. 

Due to the identifiability issues observed during initial model 

development, the parameters describing the polyglutamation steps by FPGS 

(kFPGS1-4) and the volume of distribution parameters (VGluX) were fixed in the 

original model as described in Chapter 5. Changing the structural model with 

respect to the cleaving mechanism of GH does not resolve the identifiability 

problems observed for the original model and therefore the same parameters 

were also fixed in the three alternative models. 
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6.4.2. Hypothesis test 2: Loss of MTXPGs from RBCs 

Testing the potential loss of MTXPGs from RBCs was performed in a 

similar fashion than testing the preferred cleaving mechanism of GH. The 

general structure of the alternative models is shown in Figure 6.2.  

 

Figure 6.2: General model structure used for assessing a potential loss of MTXPGs 

from RBCs in addition to the loss of MTXGlu1, where kout,GluX = CLGluX/VGluX. 

This model structure was fitted to the clinical data using NONMEM and 

the individual kout,GluX were estimated as CLGluX/VGluX. The polyglutamation 

rate constants kFPGS1-4 and individual VGluX were kept fixed as described in 

Chapter 5 due to the observed identifiability issues.  

For each fit of the six different hypotheses described in the Introduction of 

this chapter (Section 6.2.2) only the relevant parameters of the general model 

structure were included in the tested model. This means that for Hypothesis 1a 

all individual rate constants of loss from RBCs (kout,GluX) were estimated, while 

for Hypothesis 1b only kout,Glu1 was estimated and kout,Glu2-5 were set to the same 

value as kout,Glu1, i.e. kout,Glu1 = kout,Glu2 = kout,Glu3 = kout,Glu4 = kout,Glu5. For 

Hypothesis 2, kout,Glu2 was fixed to 0. The remaining four kout,GluX parameters 

were estimated individually for Hypothesis 2a, while in Hypothesis 2b it was 

assumed that kout,Glu3 = kout,Glu4 = kout,Glu5 and kout,Glu3-5 was allowed to differ from 

kout,Glu1, resulting in two estimated clearance parameters: kout,Glu1 and kout,Glu3-5. 

For Hypothesis 3 the same approach as for Hypothesis 2 was applied, yet here 
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kout,Glu2 and kout,Glu3 were fixed to 0, resulting in the estimation of kout,Glu1 and 

kout,Glu4&5 for Hypothesis 3b, while in Hypothesis 3a kout,Glu1 = kout,Glu4&5. 

Note, that Figure 6.2 is shown using the structure of the original PK 

model where GH cleaves only one glutamate moiety; however, the best model 

found from Hypothesis test 1 will be used.  

To determine the model that provides the best fit AIC and LRT were used 

as model discrimination criteria as described before. 

6.4.3. Hypothesis test 3: Significance of genotypic covariates on MTXGluX 

PK in RBCs 

As can be seen in Table 6.1, data from eight different polymorphisms 

relevant to the intracellular PK of MTX were available from the data set used 

for model building. These eight polymorphisms included three SNPs; two 

affecting genes coding for MDRT efflux transporters of the ABC family while 

the third affects the gene coding the influx transporter RFC. The other five 

polymorphisms are CNVs; four occurring in genes coding MDRT efflux 

transporters, one coding the deglutamation enzyme GH. 

These polymorphisms were tested individually for their significance as 

covariates on the corresponding parameters in the population PK model. The 

six polymorphisms (rs35592, rs3784862, rs17731538, rs4148396, rs2273697, and 

rs1045642) affecting MDRT efflux transporters were included on all CLGluX in 

the model (depending on whether these parameters were supported based on 

the results of the previous hypothesis tests). The SNP rs1051266 affects RFC 

and was therefore included on kin, while the CNV of rs11545078 affecting GH 

was included on all four deglutamation rate constants kGH2-5 and it was 

assumed that the covariate affects all four rate constants equally, i.e. the 

covariate coefficients added to these parameters were assumed to be the same. 

For SNPs, the influence of the three different genotypes (homozygous 

wildtype, heterozygous, and homozygous for minor allele) on the 

corresponding parameter were coded according to Equation 6.1: 
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ˆ
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where  a = 0 and b = 0 for a wildtype individual 

 a = 1 and b = 0 for a heterozygous individual 

 a = 0 and b = 1 for an individual homozygous for the minor allele 

Equation 6.1: Covariate model for a SNP. 

Here, ipθ̂ is the individual estimate of the pth parameter in the ith 

individual, pθ
ˆ  is the population mean parameter estimate, ip is the random 

effect for the ith individual, a and b are control parameters equal to 0 or 1 

dependent on the genotype of the ith individual, while 1 and 2 are the 

estimated covariate coefficients for an individual heterozygous or homozygous 

for minor allele, respectively.  

Similarly, the influence of a CNV as genotypic covariate on the 

corresponding parameter was coded according to Equation 6.2: 

    ipepip



b

2
a

1 ββθ
ˆ

θ̂  

where  a = 0 and b = 0 for a individual with one copy of both alleles 

 a = 1 and b = 0 for a individual with two copies of allele 1 and one 

copy of allele 2 

 a = 0 and b = 1 for a individual with one copy of allele 1 and two 

copies of allele 2 

 a = 1 and b = 1 for a individual with two copies of both alleles 

Equation 6.2: Covariate model for a CNV. 

Genotypic information was lacking for two individuals in the data set. 

These individuals were assumed to be homozygous for the wildtype of all 

SNPs and to have one copy of both alleles for the CNVs, i.e. a and b were set to 

zero in Equation 6.1 and Equation 6.2 for all tested genotypes for these 

individuals. 
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The LRT was used to assess the significance of the inclusion of the two 

estimated coefficients 1 and 2 into the model in comparison to the nested 

model without covariate effects (base model). Two additional parameters 

results in two additional degrees of freedom and the corresponding critical 

value for the LRT is 5.99 at an -error level of 5%. This means that the inclusion 

of the two additional parameters must result in a decrease in the OFV of at least 

-5.99 points in comparison to the base model to be statistically significant.  

6.4.4. Hypothesis test 4: Significance of phenotypic covariates to predict 

between subject variability in the plasma PK of MTX 

Table 6.2 lists the demographics available in the data set used for model 

building in Chapter 5 that were tested here as potential covariates to predict 

BSV in the clearance of MTX from plasma.  

Table 6.2: Covariates (mean  SD) with potential influence on the plasma clearance of 

MTX available in the data set (oral study [186], sc study [187]). 

Patient characteristics oral study sc study pooled 

Number of individuals 18 30 48 

eGFR [ml/min/1.73m2] 76.7  14.3 81.9  15.1 80.0  14.8 

Weight [kg] 75.2  13.5 78.4  16.6 77.2  15.4 

Height [cm] 172.2  6.6 a 162.2  31.1 164.7  27.3 
a values for height missing for eight individuals in the oral study 

Based on these covariates two alternative covariate models were 

hypothesised. First, eGFR was tested for its significance as covariate on total 

MTX plasma clearance CL1. Yet, the eGFR values available in the data set were 

calculated according to the MDRD formula that automatically normalises the 

calculated GFR values to a body surface area (BSA) of 1.73 m2. To account for 

this normalisation, the covariate model was corrected for BSA, and both 

covariates were centred on typical values: 100 ml/min/1.73 m2 for eGFR and 

1.73 m2 for BSA (Equation 6.3). 
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Equation 6.3: Covariate model for BSA adjusted eGFR on total plasma clearance CL1. 

Here, as well as in the following equations, CL1,i denotes the individual 

total plasma clearance of the ith individual, CL1,pop is the population mean value 

of total MTX plasma clearance (fixed to 8.4 L/hr according to Hoekstra et al. 

[91]), and  is the estimated covariate coefficient. 

BSA was calculated form total body weight (WT) and height (HT) 

according to the Mosteller formula [205]: 

 
3600

[cm] HT[kg] WT
  m BSA 2 
  

Equation 6.4: Mosteller formula to calculate body surface area (BSA) from total body 

weight (WT) and height (HT). 

Note that for eight individuals from the oral study height had already 

been imputed based on weight and sex for the analysis presented in Chapter 5 

(see Appendix A.5.1). Here, the imputed values were again used to calculate 

BSA of these individuals. 

It needs to be noted that GFR is a biomarker for renal clearance, yet only 

81% of an administered MTX dose is renally cleared [86]. Total MTX clearance 

also involves hepatic metabolism whose capacity is determined by body size. 

Therefore, the second covariate model tested the effect of BSA adjusted eGFR 

as covariate on the renally cleared fraction (rCL1) only. In addition, 

allometrically scaled total body weight with a fixed exponent of 0.75 [206] and 

centred on a typical value of 75 kg was included as additional covariate 

describing body size on the non-renal fraction (nrCL1). Renal and non-renal 

clearance of MTX were assumed to be linear independent processes in this 

model, and it was furthermore assumed that renal clearance of MTX is either 

affected linearly (A) or non-linearly (B) by the influence of the covariates 

(Equation 6.5). 
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Equation 6.5: Covariate model for BSA adjusted eGFR on the renal fraction of CL1 

using either a linear model (A) or a non-linear model (B), and allometrically scaled 

total body weight (WT) on the non-renal fraction, with f = 0.81. 

Again, the LRT was used to assess the significance of the addition of the 

covariate effects described by parameter  for nested models, while the AIC 

was used to discriminate between non-nested models. 

6.4.5. Refinement of the PK model for MTX in RBCs 

Throughout the hypothesis testing process, the proposed population PK 

model for MTX in RBCs was updated based on the results. This means that if 

an alternative model tested during one of the hypothesis tests was found to be 

superior to the corresponding base model, the alternative model was then 

carried forward for subsequent testing (as an updated base model). Therefore, 

the resulting final model constitutes the best structural model and also includes 

all covariates that were found to be significant throughout this analysis. 

Non-parametric bootstrap was used to evaluate the updated model. 400 

bootstrap runs were conducted in NONMEM, where resampling was 

stratified based on the number of patients that started, ceased or received 

continuous MTX treatment. The asymptotic empirical 95% confidence intervals 

of the parameter estimates were constructed based on the means and standard 

deviations for the runs that minimised successfully. 

The updated model was furthermore assessed based on the individual fits 

to the data for its suitability as a basis for a full PKPD model, while prediction 
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and variability corrected visual predictive checks (pvcVPCs) [207] were used to 

assess the predictive performance of the model. 

6.5. Results 

6.5.1. Hypothesis test 1: Cleaving mechanism of -glutamyl hydrolase 

The OFV and AIC values for the four structural models in Figure 6.1 

assessing the preferred cleaving mechanism GH are given in Table 6.3 

Table 6.3: OFV and AIC for structural models assessing the preferred cleaving 

mechanism of GH.  

Model Cleaving mechanism of GH OFV AIC 

Model A 1 glutamate moiety (original) 15430.96 15478.96 

Model B 2 glutamate moieties, without 
conversion of MTXGlu2 to 
MTXGlu1 

15873.14 15921.14 

Model C 2 glutamate moieties, with 
conversion of MTXGlu2 to 
MTXGlu1 

15898.96 15944.96 

Model D 1 and 2 glutamate moieties 15528.52 15588.52 

 

It needs to be noted that NONMEM had difficulties with the 

minimisation for Models C and D, as the algorithm was trapped in local 

minima for the corresponding runs presented in Table 6.3. Model D did not 

default to either Model A, B or C although these models are all nested within 

the structure of Model D, while Model C equally failed to default to the 

corresponding nested model B.  

These runs were all started from the same initial values, with 0.1 hr-1 for 

kGH31, kGH42 and kGH53 for Models B, C and D. For Model D, these initial 

values resulted in final estimates of 0.0608 hr-1, 0.0484 hr-1, and 0.0897 hr-1, 

respectively, for these parameters. Yet, when the initial estimates for kGH31, 

kGH42 and kGH53 were set to 1 x 10-4 hr-1, Model D almost defaulted to Model A 
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with final estimates of 0.0042 hr-1, 1 x 10-6 hr-1, and 3 x 10-6 hr-1 for kGH31, kGH42 

and kGH53, respectively, and an OFV of 15430.83 (AIC 15490.83).  

Based on these results, cleaving of only one glutamate moiety by GH is 

preferred, as the original model (Model A) has the lowest AIC. This model 

structure was therefore retained for the following hypothesis test. 

6.5.2. Hypothesis test 2: Loss of MTXPGs from RBCs 

The results for the six hypotheses tested to assess a potential loss of 

MTXPGs from RBCs are shown in Table 6.4. 

Table 6.4: OFV and AIC for the six hypotheses (H) assessing a potential loss of 

MTXPGs from RBCs. 

H Coding of loss of MTXGluX (kout,GluX = CLGluX/VGluX) a OFV AIC 

1a kout,Glu1  kout,Glu2  kout,Glu3  kout,Glu4  kout,Glu5  25627.48 25691.48 

1b kout,Glu1 = kout,Glu2 = kout,Glu3 = kout,Glu4 = kout,Glu5 15413.88 15461.88 

2a kout,Glu1  kout,Glu3  kout,Glu4  kout,Glu5 & kout,Glu2 = 0 15422.88 15480.88 

2b kout,Glu1  kout,Glu3 = kout,Glu4 = kout,Glu5 & kout,Glu2 = 0 15422.03 15474.03 

3a kout,Glu1  kout,Glu4  kout,Glu5 & kout, Glu2 = kout,Glu3 = 0 15421.19 15475.19 

3b kout,Glu1  kout,Glu4 = kout,Glu5 & kout,Glu2 = kout,Glu3 = 0 15420.05 15472.05 

a Note, that here  means that the parameters were allowed to differ in principle, but 

could still be estimated as having the same value. 

 

Again, identifiability issues became apparent during this analysis with all 

tested models other than the model for Hypothesis 1b. None of the additionally 

parameters kout,GluX describing loss of MTXPGs that were added in these models 

could be estimated as changes in these parameters did not result in changes in 

the OFV (observed as zero gradients throughout the minimisation procedure in 

NONMEM for these parameters). 

However, Hypothesis 1b, where the loss of all MTXGluX from the cells is 

assumed to be equal to the rate constant of the parent drug (kout,Glu1), was stable 

and provided a better fit to the data than the original model as the AIC value 
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for this hypothesis is lower than the AIC value of the non-nested original 

model (15461.88 versus 15478.96). Therefore, the population PK model for MTX 

in RBCs was updated according to Hypothesis 1b and this updated model was 

used for the following hypothesis tests. 

6.5.3. Hypothesis test 3: Significance of genotypic covariates on MTXGluX 

PK in RBCs 

The eight PK relevant polymorphisms available in the data set were 

individually included in the updated population model as covariate effect on 

the corresponding parameters. However, none of these covariates showed a 

significant effect. Based on the LRT a drop in the OFV of at least -5.99 is 

required to render the inclusion of two additional parameters significant, yet 

inclusion of the two additional covariate coefficients β1 and β2 did not result in 

a drop of more than -5.99 for any of the tested covariates (Table 6.5).  

The biggest, yet still non-significant reduction in OFV (-5.07) is seen for 

the inclusion of the CNV of rs35592 in ABCC1, followed by rs4148396 in 

ABCC2 (-3.93). For these models, the only notable change in the population 

parameter estimates compared to the base model was seen for CLGlu1, the 

parameter on which the covariate effect was included: 2.93 x 10-4 hr-1 in the base 

model versus 2.71 x 10-4 hr-1 for the model including rs35592 and 2.53 x 10-4 hr-1 

for the model including rs4148396. 
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Table 6.5: Comparison of hypothesised models without and with inclusion of genotypic covariates relevant to the intracellular PK of MTX. 

Gene SNP Variant 
Parameter with 
covariate effect 

Population 
mean estimate 

Estimated coefficients 
OFV 

1 2 

Base model without genotypic covariates - - - - 15413.88 

Genotypic covariate that affects -glutamyl hydrolase 

GH rs11545078 CNV kGH2 

kGH3 

kGH4 

kGH5 

0.1678 hr-1 

0.1879 hr-1 

0.2397 hr-1 

0.2966 hr-1 

1.0711 

same 

same 

same 

- 15413.61 

Genotypic covariates that affect the multi drug resistance transporters 

ABCC1 rs35592 CNV CLGlu1 2.71 x 10-4 hr-1 2.2702 1.3986 15408.81 

 rs3784862 CNV CLGlu1 2.93 x 10-4 hr-1 1.0311 2.93 x 10-4 15413.67 

ABCG2  rs17731538 CNV CLGlu1 2.91 x 10-4 hr-1 0.9393 1.0347 15413.84 

ABCC2  rs4148396 CNV CLGlu1 2.53 x 10-4 hr-1 0.9420 1.3862 15409.95 

 rs2273697 1249G>A CLGlu1 2.93 x 10-4 hr-1 1.00 x 10-6 a 1.00 x 10-6 a 15413.93 

ABCB1  rs1045642 3435C>T CLGlu1 2.81 x 10-4 hr-1 2.67 x 10-5 1.07 x 10-5 15413.71 

Genotypic covariate that affects the reduced folate carrier 

SLC19A1 rs1051266 80G>A kin 2.00 x 10-4 hr-1 2.32 x 10-5 3.25 x 10-5 15412.88 

a Minimisation terminated, estimates of 1 and 2 near boundary 
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6.5.4. Hypothesis test 4: Significance of phenotypic covariates to predict 

between subject variability in the plasma PK of MTX 

Table 6.6 gives an overview of the results obtained with the three different 

covariate models using eGFR as a biomarker for predictable BSV on plasma 

clearance of MTX (CL1) in comparison to the base model without covariates on 

CL1. Note that here the base model is the updated structural model where the 

loss of all MTXGluX is described by the rate constant kout,Glu1 (Hypothesis 1b in 

Section 6.5.2). 

Table 6.6: Comparison of the hypothesised covariate models testing the significance of 

phenotypic covariates on total versus renal plasma clearance of MTX. 

Model Covariate model  OFV AIC 

Base none - 15413.88 15461.88 

Hypothesis 
1 

BSA adjusted eGFR on 
total CL1 

0.284 15407.51 15457.51 

Hypothesis 
2A 

linear model for BSA 
adjusted eGFR on rCL1,  
allometric WT on nrCL1 

0.106 15402.96 15452.96 

Hypothesis 
2B 

non-linear model for BSA 
adjusted eGFR on rCL1,  
allometric WT on nrCL1 

0.358 15406.85 15456.85 

 

As can be seen from these results, the inclusion of the covariates on CL1 is 

significant based on the LRT for all hypothesised covariate models as all three 

models result in a decrease in the OFV of more than -3.84 in comparison to the 

base model that does not include the additional parameter . 

Out of the three covariate models, Hypothesis 2A performs best as it has 

the lowest AIC value. Therefore, the effect of BSA adjusted eGFR on MTX 

plasma clearance is best described by a linear covariate model on the renal 

fraction (rCL1) only, while allometrically scaled total body weight (WT) is used 

to predict BSV in the non-renal fraction (nrCL1). 
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6.5.5. Refinement of the PK model for MTX and MTXPGs in RBCs 

Based on the results of the four different hypothesis tests, the original 

population PK model for MTX in RBCs developed in Chapter 5 was refined 

here with respect to its structure and by adding further covariates. The 

structural update in the final model was based on Hypothesis 1b in Section 

6.5.2 which assumed that all MTXGluX are lost from RBCs described by the 

same rate constant kout,GluX = kout,Glu1 = CLGlu1/VGlu1, while BSA adjusted eGFR 

was included as covariate on renal plasma clearance and allometrically scaled 

total body weight on non-renal plasma clearance according to Hypothesis 2A 

in Section 6.5.4. These covariates account for predictable BSV in the otherwise 

fixed plasma PK of MTX. The updated NONMEM code is shown in Appendix 

A.6.1. 

The parameter estimates for the final updated model are shown in Table 

6.7, together with their means p  and standard deviations s obtained from the 

non-parametric bootstrap analysis based on 101 successful runs out of 400 runs 

in total (success rate 25.3%). The corresponding asymptotic empirical 95% 

confidence interval (CI) was calculated according to: 

sp  96.1CI %95  

Equation 6.6: Formula to calculate the upper and lower bound of the asymptotic 

empirical 95% confidence interval (CI) of the bootstrap parameter estimates, with an 

-error level of 0.05. 

As for the previous parent-metabolite model in Chapter 5, the mean 

parameter estimates of the bootstrap results agree reasonably well with the 

estimates for original data set under the updated model structure. The main 

reason for unsuccessful minimisations was again rounding errors.  
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Table 6.7: Parameter estimates for the final updated parent-metabolite model. 

Parameter Estimate Shrinkage [%] c Mean (BS) a 
Empirical standard 

deviation (BS) a 
Asymptotic empirical  

95% CI (BS) a,b 

kin [hr-1] 5.91 x 10-5 - 5.92 x 10-5 1.56 x 10-5 2.87 x 10-5 – 8.97 x 10-5 

CLGlu1 [L/hr] 2.94 x 10-4 - 2.92 x 10-4 2.29 x 10-5 2.47 x 10-4 – 3.37 x 10-4 

VGlu1 [L] 0.3 fixed - - - - 

VGlu2 [L] 0.3 fixed - - - - 

VGlu3 [L] 0.3 fixed - - - - 

VGlu4 [L] 0.3 fixed - - - - 

VGlu5 [L] 0.3 fixed - - - - 

kFPGS1 [hr-1] 0.171 fixed - - - - 

kFPGS2 [hr-1] 0.344 fixed - - - - 

kFPGS3 [hr-1] 0.097 fixed - - - - 

kFPGS4 [hr-1] 0.141 fixed - - - - 

kGH2 [hr-1] 0.169 - 0.171 0.0100 0.151 – 0.190 

kGH3 [hr-1] 0.189 - 0.187 0.0153 0.157 – 0.217 

kGH4 [hr-1] 0.241 - 0.239 0.0149 0.210 – 0.268 

kGH5 [hr-1] 0.296 - 0.303 0.0217 0.260 – 0.345 

Covariate effect  of 
eGFR and BSA on CL1 

0.106 - 0.105 0.0933 -0.078 – 0.288 

a Non-parametric bootstrap statistics based on 101 runs with successful minimisation out of 400 runs. 
b Asymptotic empirical 95% confidence interval (CI) constructed based on mean and empirical standard deviation of the 101 successful BS runs.  
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Table 6.7: continued 

Parameter Estimate Shrinkage [%] c Mean (BS) a 
Empirical standard 

deviation (BS) a 
Asymptotic empirical  

95% CI (BS) a,b 

BSV kin [%] 56.5 9.0 58.8 9.0 43.1 – 78.5 

BSV CLGlu1 [%] 41.1 25.5 44.3 10.1 27.0 – 68.8 

BSV VGlu1 [%] 32.2 23.6 30.8 8.7 15.7 – 55.3 

BSV VGlu2 [%] 34.5 21.5 31.5 13.2 10.9 – 74.0 

BSV VGlu5 [%] 51.8 18.5 45.9 10.7 19.3 – 97.8 

BSV kGH3 [%] 54.3 8.5 53.4 5.6 43.2 – 65.3 

BSV kGH4 [%] 42.0 4.5 41.0 4.7 32.4 – 51.2 

BSV kGH5 [%] 15.4 75.7 19.0 17.9 0.03 – 526.4 

CVprop Glu1 [%] 17.9 
3.8 

17.9 2.2 13.7 – 22.2 

add Glu1[nmol/L] 6.06 6.13 0.67 4.82 – 7.44 

CVprop Glu2 [%] 21.5 
3.9 

21.0 2.5 16.1 – 25.9 

add Glu2[nmol/L] 2.74 2.80 0.44 1.93 – 3.67 

CVprop Glu3 [%] 11.9 
3.9 

12.1 1.3 9.59 – 14.6 

add Glu3[nmol/L] 6.23 6.21 0.71 4.82 – 7.59 

CVprop Glu4 [%] 25.4 
3.6 

25.4 3.3 18.8 – 31.9 

add Glu4[nmol/L] 1.93 1.99 0.28 1.44 – 2.54 

CVprop Glu5 [%] 28.1 
3.9 

27.0 3.4 20.3 – 33.7 

add Glu5[nmol/L] 1.47 1.37 0.58 0.23 – 2.51 

c -shrinkage given for BSV parameters, -shrinkage for each MTXGluX given together with the corresponding RUV parameters CVprop and add GluX. 
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Figure 6.3 shows the individual fit of the updated model to the data of six 

representative individuals. These are the same individuals that were also 

plotted in Chapter 5. The individual fits of all 48 patients are provided in 

Appendix A.6.2. 

Comparing these plots with the corresponding figure in Chapter 5 (Figure 

5.6) shows only subtle differences in the individual fits. However, the new 

model performs better on a global scale across all individuals and observations 

as can be seen from the AIC values: 15478.96 for the previous model developed 

in Chapter 5 versus 15452.96 for the final updated model. 

The final updated model was furthermore assessed for its predictive 

performance based on pvcVPCs (Figure 6.4). The simulations underlying these 

plots were stratified based on the number of patients starting, stopping or 

receiving continuous therapy in the study, and were corrected for data below 

the limit of quantification (BLQ data), i.e. simulated MTXGluX concentrations 

below the limit of quantification (5 nmol/LRBCs) were removed from the 

simulated data sets as was done in the original study. The 10th, 50th (median) 

and 90th percentile of the prediction and variability corrected (pvc) observed 

and simulated MTXGluX concentrations were plotted against time after study 

begin as independent variable with an equal number of observations per bin. In 

addition, the 95% confidence intervals around the simulated percentiles were 

constructed.  

 

 

 

 

following page: 

Figure 6.3: Individual fits for all five MTXGluX obtained with the updated parent-

metabolite model for six representative patients: ID32 & ID34 starters, ID38 & ID40 

stoppers, ID15 & ID25 patients on continuous therapy. Blue dots: observations, red 

line: individual prediction, grey line: population mean prediction. 
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Prediction and variability correction was conducted to account for 

predictable variability arising from differences in other independent variables 

such as differences in dose and covariates between the patients [207]. When 

these corrections are applied the resulting pvcVPC plots provide a better 

reflection of the random variability in the predictions than classical uncorrected 

VPCs [207]. Note that this correction is done after the BLQ correction, and the 

prediction and variability corrected MTXGluX concentrations can be lower 

than the quantification limit. 

Overall, the median model prediction show reasonably good agreement 

with the median of the data, with a slight tendency to over-predict the median 

MTXGlu2 concentrations. This means that the structural model is able to 

describe the MTXGluX concentrations in an average individual well. Notably, 

the best agreement is obtained for MTXGlu3, which is the most abundant 

MTXGluX. However, the model has difficulties in capturing the random BSV, 

as can be seen from the mismatch of the 10th and 90th percentiles and the large 

confidence interval especially around the upper percentile. 
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Figure 6.4: Prediction and variability corrected visual predictive checks (pvcVPCs) for 

all five MTXGluX based on the final updated model stratified for starters, stoppers and 

continuous therapy in the original data set. Median (solid lines), 10th and 90th 

percentiles (dashed lines) of the observed (black) and simulated (red) corrected 

MTXGluX concentrations with the 95% confidence interval around the simulated 

percentiles (shaded red areas). 
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6.6. Discussion 

6.6.1. Hypothesis testing 

In this chapter the previously developed population PK model for MTX in 

RBCs was used to test four different hypotheses. 

The first hypothesis test concerned the cleaving mechanism of GH, i.e. 

whether the enzyme cleaves one, two, or one and two moieties of glutamate 

simultaneously. The previously developed model assumed cleaving of just one 

glutamate moiety and none of the alternative structural models tested here 

provided the apparent best fit to the data, although cleaving of two glutamate 

moieties was shown to occur in vitro by Rhee et al. [97]. However, it needs to be 

noted that the developed model is empirical in nature and the available data 

reflects a cross-section of MTXGluX concentrations in a random sample of 

RBCs rather than the kinetics in an individual RBC (see also Discussion in 

Chapter 5 Section 5.6.3). Therefore, it remains possible that the true cleaving 

mechanism of GH cannot be observed in the available data based on this 

empirical model. It is also noted that the more complex models did not 

naturally collapse to the simpler models as the estimation algorithm was 

trapped in local minima. Nevertheless, using a variety of sets of initial 

estimates for the more complex models did not provide a fit that was superior 

to the previous model. In this light and based on the available data, the simple 

model, which assumes the cleaving of just one glutamate moiety, seems to 

describe the kinetics of intracellular MTX metabolism best. Yet, a formal 

identifiability analysis is required to assess whether the observed stability 

issues of the alternative models are due to a lack of structural (a priori) 

identifiability that is inherent in the models themselves, or result from a lack of 

information in the available data (deterministic non-identifiability). In the later 

case, changes in the design of future studies would be required to overcome the 

observed stability issues. 

The second hypothesis test also considered structural aspects of the 

proposed model. Here, it was tested whether an additional loss of MTXPGs is 
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observable in the available data and supported by the model. Loss of MTXGluX 

could be due to two different reasons: 1) efflux transport via MDRT and 2) 

removal of RBCs from the circulation. MTXGluX is known to be a substrate for 

MDRT efflux pumps, while MTXPGs have a much lower affinity to these 

transporters. Nevertheless, Morrison and Allegra [8] found a model that 

included loss of long chain MTXGluX from human breast cancer cells to be 

superior to a model that only accounts for loss of MTXGlu1. If such a loss is 

due to active efflux transport, the rate constants of the loss of MTXPGs should 

differ from the rate constant of MTXGlu1 and also differ between the 

individual MTXGluX due to the differences in the affinities to the transporters. 

The second possible mechanism of loss is due to removal of RBCs from the 

circulation, i.e. death of RBCs. If this is the only loss mechanism affecting 

MTXGluX, all MTXGluX should be lost with the same rate constant when for 

simplification purposes RBC destruction is assumed to follow a first-order 

process rather than a finite lifespan. However, it was not possible to 

discriminate between these two possible mechanisms of MTXGluX loss based 

on the proposed model as the addition of further estimated loss parameters for 

MTXPGs resulted in additional identifiability issues in the model. Yet, the 

hypothesis that the loss of all MTXGluX is described by the same rate constant 

kout,GluX = kout,Glu1 = CLGlu1/VGlu1 provided a better fit to the data than the 

original model which only allowed for the loss of MTXGlu1. Therefore, a 

general loss of all MTXGluX was supported in the model based on the available 

data and this updated model was used for the subsequent hypothesis tests on 

the significance of covariates, although the underlying mechanism(s) for this 

loss remain elusive. 

The third hypothesis test addressed the question of whether genotypic 

covariates showed a significant effect on the intracellular PK of MTX in RBCs. 

Although a large number of polymorphisms affecting genes which are 

associated with enzymes and transporters relevant to the intracellular MTX PK 

have been identified and investigated for association with outcomes of MTX 

treatment, none of these polymorphisms have been tested for their significance 
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as covariates in a population PK model for MTX. In the data set used for 

analysis data on several polymorphisms relevant to the intracellular PK of MTX 

in RBCs were available, including polymorphisms affecting the influx and 

efflux transporters as well as the deglutamation enzyme GH. These 

polymorphisms were tested independently as covariates on the corresponding 

parameter values in the updated population model. Although two of the tested 

polymorphisms (ABCC1 rs35592 and ABCC2 rs41488396) showed a notable 

reduction in the OFV (Table 6.5), none were found to have a statistically 

significant effect. Yet, it needs to be noted that this analysis only included 

genotypic information on 46 individuals (out of 48 patients in the whole data 

set) and some of the tested polymorphisms have a low frequency of carriers 

homozygous for the minor allele or multiple allele copies. Therefore, the lack of 

significance could be due to a lack of statistical power and a bigger study 

cohort would be required for a better assessment of the significance of these 

genotypic covariates. In addition, future studies should focus on the most 

promising covariate candidates seen in this analysis (ABCC1 rs35592 and 

ABCC2 rs41488396), and should be designed in such a way that a maximum of 

information on the affected parameter CLGlu1 is obtained, as this was the only 

parameter estimated that showed a notable change between the base model 

and the model with the genotypic covariates. 

Nevertheless, the large number of known polymorphisms with a possible 

effect on the intracellular PK of MTX makes it difficult to assess the individual 

effect of a single polymorphism. Some polymorphisms potentially lead to an 

increase in the intracellular MTX concentrations, while others are believed to 

decrease these concentrations. If polymorphisms with opposing effects are 

present in the same individual only the net effect is observed, which can lead to 

insignificant results when testing these effects independently. This becomes 

even more relevant if the analysis is extended to include the pharmacodynamic 

effect of MTX, as polymorphisms have also been described for many of the 

enzymes involved in the postulated pathway of action of MTX. Therefore, it 

might be beneficial in future studies to use a combined genotypic index that 
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incorporates several polymorphisms according to their net effect as covariate in 

the model rather than individual polymorphisms, as was also suggested by 

Dervieux et al. [114]. For such a combined covariate analysis approach it would 

be relevant to know whether certain polymorphisms always occur in 

combination, i.e. are in linkage disequilibrium, and whether their effects are 

additive, synergistic or even antagonistic. This knowledge would facilitate 

choosing the structure of the corresponding covariate model, e.g. whether it 

needs to allow for an interaction between polymorphisms, and the choice of an 

appropriate covariate model structure is paramount to identify a true effect 

during the modelling analysis. Yet, despite the vast number of publications on 

polymorphisms relevant to MTX PK and its postulated pathway of action, such 

detailed information is still lacking to a large extent, which hampers the 

potential of identifying relevant genotypic covariates through a modelling 

based approach. 

Finally, it was tested whether phenotypic covariates such as eGFR 

provided information relating to the predictable BSV component in an 

otherwise fixed model of the plasma PK of MTX. As the available data set did 

not contain MTX plasma concentrations, no BSV in the parameters describing 

the plasma PK of MTX could be estimated during model development in 

Chapter 5 and all individuals were assumed to exhibit the same plasma PK. 

However, this assumption risks bias in the estimates of the parameters 

describing the RBC PK. Therefore, the last hypothesis test assessed whether the 

addition of predictable BSV, described by a measure of eGFR as covariate on 

MTX plasma clearance (CL1), results in a significant improvement of the model. 

As the eGFR values available in the data set were calculated according to the 

MDRD formula, BSA adjusted eGFR was included as covariate on CL1 to 

account for the body size normalisation inherent in the MDRD formula. 

Including BSA adjusted eGFR on total plasma clearance already resulted in a 

significant improvement in the goodness of fit. The fit was improved even 

further if BSA adjusted eGFR was included as covariate on the renally cleared 

fraction of MTX only while allometrically scaled total body weight was used to 
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describe predictable BSV in the non-renally cleared fraction. These results are 

expected as differences in GFR only affect renal clearance of a drug, while 

differences in the hepatic capacity between individuals are related to 

differences in body size. Furthermore, it was found that a linear covariate 

model for BSA adjusted eGFR on renal MTX plasma clearance is superior to a 

non-linear model. Although this linear relationship between eGFR and renal 

MTX clearance is an indicator for a predominant first-order elimination 

process, this was not unexpected. It is unlikely that the secretion component of 

renal MTX clearance is saturated at the low doses of MTX used for the 

treatment of RA in the patients studied here, and a deviation from an apparent 

first-order elimination process would only be expected at higher MTX plasma 

concentrations than those present in these individuals. It needs to be noted, 

however, that the estimated covariate effect  of BSA adjusted eGFR on the 

renal component of MTX plasma clearance was 0.106. This estimate results in a 

predicted renal clearance of 0.72 L/hr in a typical individual with a BSA of 1.73 

m2 and an eGFR of 100 ml/min, which is only 10.6% of the population mean 

value if the covariate effect was not included (6.8 L/hr). It is likely that the 

estimate of  is biased as the RBC MTXGluX data might not be very 

informative with respect to the plasma kinetics of MTXGlu1. 

Based on these results, the developed model was updated to include 

predictable BSV in the plasma PK of MTX described by BSA adjusted eGFR and 

allometrically scaled total body weight as covariates on renal and non-renal 

plasma clearance of MTX. Nevertheless, in future studies plasma samples 

should also be obtained so that the true BSV in the plasma PK (predictable 

based on covariates as well as unpredictable) can be estimated. This would 

then also allow for a truly unbiased estimation of the parameters that describe 

the intracellular PK of MTX. 

6.6.2. Purpose of the model and application 

Population PK models are developed for two main purposes: 1) to be able 

to use the model for extrapolation into different circumstances through 
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simulations, and/or 2) to provide an accurate description of the concentration-

time course that can be used as a driver to describe a concurrent 

pharmacodynamic (PD) process.  

The main aim of this work was to develop a population PK model for 

MTX measured in RBCs that is able to fulfil the second purpose, as the 

developed PK model is intended to form the basis for a full population PKPD 

model which would then allow testing whether RBC MTXGluX concentrations 

are suitable biomarkers for monitoring of MTX treatment in RA.  

Based on the results obtain here, the updated model should be able to 

fulfil its designated purpose in future work. It does provide an accurate 

description of the intracellular PK of MTX for all individuals in this study 

which can be seen from the good individual fits that were obtained (Figure 6.3). 

Yet, a future PKPD model should best be developed based on the so-called IPP 

approach [208]. Using this approach the individual PK parameter estimates 

(also referred to as empirical Bayes estimates) are used as fixed values for each 

individual, i.e. the individually predicted PK profiles are retained, while only 

the PD related parameters are estimated. Therefore, this approach treats PK 

and PD as being independent processes as it does not include the PK data in 

the PD analysis. The only requirement with respect to the PK model is a good 

individual fit, which is obtained with the developed model for MTX measured 

in RBCs. Furthermore, no causal link between PD effects of MTX and MTX RBC 

concentrations is expected as RBCs are not located on the postulated pathway 

of action of MTX. This means that the underlying assumption of the IPP 

approach, independence between PK in RBCs and PD, is valid. In fact, the use 

of other PKPD modelling approaches which include PD information to 

estimate PK parameters, e.g. the simultaneous approach, could be problematic 

as under these circumstances the PD data will provide wrong information on 

the PK which can result in biased estimates for the PK parameters. 

Nevertheless, the developed model is unable to fulfil the first potential 

purpose of a population PK model as evident from the misfit with respect to 

the predicted variability compared to the variability in the observations seen in 
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the pvcVPC plots in Figure 6.4. Although a good agreement between the 

median model predictions and the median observations was obtained, the 

variability in a population predicted by the model exceeds the variability 

observed in the data for all MTXPGs while the variability in MTXGlu1 is 

under-predicted as can be seen in the pvcVPC plots. This suggests that the BSV 

parameters in the model are not accurately estimated and do not reflect the true 

BSV in the corresponding structural parameters seen in the population.  

One of the goals for including random effects such as BSV parameters in a 

non-linear mixed effect modelling analysis is to obtain an accurate estimate of 

the true variability in a population which then allows using the model for 

extrapolation purposes, i.e. simulations. This goal could not be achieved for 

this model and simulation based diagnostics such as the pvcVPCs in Figure 6.4 

should be interpreted cautiously. The second purpose of including BSV terms 

in a population model is to eliminate the bias in the structural parameter 

estimates (fixed effects) that would occur if the repetitive measurements in an 

individual were treated as being independent of each other, i.e. not being 

correlated through the BSV terms.  

Here, it was tested whether the structural model is stable with respect to 

changes in BSV on CLGlu1 as this BSV parameter affects all five MTXGluX via 

the loss parameter kout,GluX = kout,Glu1 = CLGlu1/VGlu1. In two additional analyses 

BSV on CLGlu1 was fixed to 25% of its estimated value and the remaining 

parameters were re-estimated. Neither of these runs resulted in differences in 

the estimates of the structural parameters (results not shown). Hence, including 

BSV in the model provides unbiased estimates of the fixed effects and is also 

required to obtain the good fit to the individual data. This means that the BSV 

terms in the model are non-ignorable, although the estimated values lack 

predictive potential. Future studies preferably on larger study cohorts are 

required to obtain a better estimation of the true BSV in the population that 

then also fulfils the goal of a good predictive performance. 
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6.7. Conclusion 

Based on the available data the model supports a loss of all individual 

MTXGluX from RBCs when the loss is described by the same rate constant 

kout,GluX = kout,Glu1 = CLGlu1/VGlu1, while simultaneous cleaving of more than one 

glutamate moiety by GH is not supported in the model. However, future work 

is necessary to establish whether the observed stability issues are due to 

structural or deterministic identifiability issues in the proposed models. 

In this small data set polymorphisms relevant to the intracellular MTX PK 

do not show a significant effect as genotypic covariates in the model when 

tested independently. Further studies on larger cohorts as well as additional 

information on interactions between the known polymorphisms are required 

for future work. 

Although no plasma samples were available in the data set, it was 

possible to include predictable BSV in the plasma PK of MTX using phenotypic 

covariates such as eGFR, BSA and total body weight. BSA adjusted eGFR was 

found to have a significant linear covariate effect on the renal fraction of MTX 

plasma clearance, while allometrically scaled total body weight was able to 

describe variability in the non-renal fraction.  

The final updated model is structurally stable and provides a good fit to 

the individual data. Therefore, it can be used in future work as the basis for a 

full PKPD model for MTX and MTXPGs measured in RBCs, and the IPP 

approach is recommended for the development of such a PKPD model. 

However, the model poorly estimates the variability seen in the population and 

therefore should not be used for extrapolation purposes such as simulation 

based predictions. 

Future studies are required for a better quantification of BSV in the 

plasma PK of MTX as well as the true variability in MTXGluX concentrations. 
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7.1. Synopsis of this thesis 

In this thesis two different approaches were applied to model red blood 

cell (RBC) derived data. First, a bottom-up approach was applied to develop a 

model for the survival time of RBCs that was principally mechanism based. 

This model was subsequently applied to clinical data. The next part of this 

work focussed on describing the intracellular pharmacokinetics (PK) of 

methotrexate (MTX) in RBCs based on a mainly data driven, top-down 

modelling approach. 

Both approaches are justified given the intended purposes of the 

developed models: quantification of the different physiological mechanisms 

involved in RBC destruction in the first case, and obtaining an accurate 

description of the concentration-time profile of MTX accumulation in RBCs in 

the second.  

7.2. Discussion of the findings 

7.2.1. A novel statistical model for RBC survival 

The RBC survival model developed in Part II of this thesis has the 

intention of ultimately providing a better insight into RBC destruction 

mechanisms and how these are affected by pathological conditions such as 

chronic kidney disease (CKD). Thus, a mechanistic model was required, and a 

bottom-up approach was used to develop a novel statistical model for RBC 

survival. Here, “statistical” means that the model was developed in the frame 

work of survival data analysis, yet without being based on data. Instead, the 

underlying probability density function (pdf) was chosen based on prior 

knowledge of physiologically plausible mechanisms of RBC destruction. 

To date, there is no reliable information available on the actual 

distribution of RBC lifespans in humans. However, it is known that 

physiological RBC destruction mechanisms include senescence, age-

independent random destruction as well as death due to early or delayed 

failure. Therefore, a pdf that is able to account for these four mechanisms was 
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chosen as the underlying function in the model. In contrast, previously 

proposed RBC survival models that allow the RBC lifespan to vary within an 

individual mostly account only for senescence [75,76,78,79], and rarely for a 

combination of senescence and random destruction [80]. 

The developed model was shown to be able to replicate the shape of 

disappearance curves that are usually obtained with different RBC labelling 

methods. These include random labelling techniques where RBCs are labelled 

irrespectively of their age, e.g. using radioactive chromium (51Cr), as well as 

cohort labelling techniques where the label is incorporated during the 

production of RBCs in the bone marrow over a period of time resulting in 

labelled RBCs of similar age, e.g. labelling with heavy nitrogen. Therefore, the 

model was thought to be in principle suitable for analysing RBC survival 

studies conducted in clinical practice.  

The model was then extended to account for the flaws inherent in 

commonly used RBC labelling techniques to be able to obtain a more accurate 

description of the RBC lifespan. Notably, for the most commonly used RBC 

label, 51Cr, the flaws included in the model did not only consist of the decay of 

the radioactive label and the random loss of label from the cells after 

dissociation of the chromium-haemoglobin complex, but also loss due to 

vesiculation of haemoglobin together with the bound label. Vesiculation of 

haemoglobin has only recently been reported in literature [68]. The developed 

model is one of the first where this mechanism of 51Cr loss is accounted for 

when used to analyse the data of corresponding RBC survival studies. 

It was tested whether full parameter estimation would be possible for this 

model under different labelling conditions based on theory of experimental 

design methodology, i.e. an information theoretical approach. Due to its 

mechanism based foundation, the developed model is of a complex nature and 

includes six fixed effect parameters. Although this is a rather large number of 

parameters to be estimated, it was nevertheless shown in Chapter 3 that full 

parameter estimation would be possible under ideal labelling conditions or 

under an intensive study design with the current labelling methods. However, 
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this analysis did not take random effects into account. If a random effect 

parameter would be included on each fixed effect parameter for a population 

analysis, then the total number of parameters to be estimated would increase to 

twelve. The deterministic identifiability of such a full population model 

requires further analysis, and the study design of future clinical studies should 

be optimised based on these results if the proposed model is to be used for data 

analysis in a full population setting in these studies. 

The model can also be simplified by fixing certain components to render it 

applicable for data that does not provide sufficient information for full 

parameter estimation in a population setting. This approach was explored in 

Chapter 4 to estimate the survival of RBCs in healthy individuals as well as 

patients with CKD undergoing haemodialysis, as the available clinical data 

were not informative enough to support full parameter estimation in the 

model. Despite this simplification, the decrease in the apparent mean RBC 

lifespan in CKD patients compared to healthy controls was found to be similar 

to the decrease reported for the same data set based on an empirical analysis 

method [165]. This shows that applying the mechanism based model is not 

inferior to an empirical analysis. However, in contrast to the previous analysis 

[165], the mechanism based modelling analysis presented here allowed testing 

which underlying RBC destruction mechanism is more likely to result in the 

decreased RBC survival in CKD patients. The results imply that an increased 

random destruction is the more likely cause, rather than an accelerated 

senescence.  

Nevertheless, although the developed model includes mechanistic 

principles of RBC destruction and was developed using a bottom-up approach, 

it is of semi-mechanistic nature as the underlying pdf was chosen arbitrarily. 

Further work is required to obtain the true RBC specific values for all 

parameters in the model, in healthy individuals as well as under different 

pathological conditions that affect RBC survival. Ideally, such future work 

should focus on recent RBC labelling methods such as biotin labelling [149,150]. 

This random labelling technique is believed to be less flawed than the 51Cr 
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technique and would therefore be more informative for parameter estimation 

in the model in future studies. 

7.2.2. A population PK model for MTX measured in RBCs 

7.2.2.1. Model development 

The main purpose of the RBC PK model for MTX developed in Part III 

was to provide an accurate description of the time course of RBC MTX 

concentrations. It is intended to form the basis of a full population 

pharmacokinetic-pharmacodynamic (PKPD) model that can be used to test the 

suitability of RBC MTX concentrations as a potential biomarker to monitor low-

dose MTX treatment in rheumatoid arthritis (RA). Therefore, a compartmental 

PK model for MTX including its polyglutamated metabolites measured in 

RBCs was developed using a data driven top-down modelling approach. 

However, model development was not entirely based on the principle of 

parsimony, but also incorporated prior knowledge. Although the available data 

set did not contain plasma data, a model previously developed by Hoekstra et 

al. [91] was used to describe the plasma PK of MTX. Furthermore, the catenary 

structure of the parent-metabolite model was chosen based on prior knowledge 

of the mechanisms of intracellular MTX metabolism. Thus, the developed 

model is of semi-empirical as well is semi-mechanistic nature rather than being 

entirely empirical, i.e. data driven. 

For simplification purposes and to reduce the computation time, all 

transport and enzymatic processes in the model were assumed to follow first-

order kinetics. As this model is based on data of low-dose MTX treatment, this 

assumption is justifiable. The measured concentrations of all individual MTX 

species (MTXGluX) are much smaller than the reported Km values of the 

corresponding enzymes or transporters. However, if the model were applied to 

data where MTX is administered in much higher doses, e.g. for cancer 

treatment, this assumption would not hold true. Therefore, this model cannot 

be used for extrapolation to high-dose MTX regimens as this would require the 

active processes to be described by Michaelis-Menten kinetics instead. 
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The catenary structure of the developed model resulted in stability issues 

during parameter estimation. To overcome this problem, the volume of 

distribution parameters of all five MTXGluX (VGluX) as well as the rate constants 

describing the polyglutamation steps (kFPGS1-4) were fixed. The corresponding 

values were obtained from the parent model for VGluX and from the literature 

for kFPGS1-4. Further work is warranted to formally assess whether the stability 

issues encountered during model development are due to a lack of structural 

identifiability (i.e. the model is a priori not globally identifiable due to its 

structure), or due to a lack of deterministic identifiability (i.e. the available data 

does not support full parameter estimation in the model). In the first case, it 

would be of interest to further investigate what structural changes are required 

to render the model structurally identifiable; whereas in the second case 

experimental design theory could be used to optimise the design of future 

clinical studies to provide data informative enough to support full parameter 

estimation. 

Another interesting finding during model development related to the data 

below the limit of quantification (BLQ). When the parent drug MTXGlu1 was 

modelled by itself, a difference in the parameter estimates was obtained when 

using Stuart Beal’s M3 method compared to the M6 method to handle BLQ 

data [189]. Thus, treating BLQ data as censored and computing the joint 

likelihood of true and censored data (M3 method) provided additional 

information that was valuable for parameter estimation in the parent model. 

However, this was not observed in the case of the parent-metabolite model, 

although the data set contained a considerable proportion of BLQ data, 

especially for the highest MTX polyglutamate, MTXGlu5 (45%). Using the M6 

method, all BLQ observations other than the first or last in a sequence of 

decreasing or increasing concentrations are removed from the data set, while 

the remaining BLQ observations are replaced by a value equal to half the limit 

of quantification. Removing such a large number of observations, even if they 

are censored data, would be expected to decrease the information inherent in 

the data set and to lead to less accurate parameter estimates [209]. Apparently 
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this was not the case here, as the parameter estimates obtained using the M3 

method did not differ significantly from those obtained using the M6 method 

for the parent-metabolite model. A possible explanation for this might lie 

within the catenary model structure. Within the chain of RBC compartments, 

an observation of a particular MTXGluX also contains information on the other 

MTXGluX species. Thus, for a particular observation it might be equally 

informative to have a true measurement available for a short chained 

MTXGluX than to compute the likelihood of a censored observation for a 

longer chained MTXGluX that was BLQ at this observation. A simulation-

estimation study would be a straight forward approach in future work to 

assess this interesting finding and to test the hypothesised explanation.  

7.2.2.2. Hypothesis testing 

The developed RBC PK model for MTX was used to test different 

hypotheses related to mechanistic aspects of the intracellular metabolism of 

MTX as well as to assess the significance of genotypic and phenotypic 

covariates.  

The underlying mechanism of MTX deglutamation via the enzyme -

glutamyl hydrolase (GH) was assessed. Although it was reported in the 

literature that GH is able to cleave two glutamate moieties simultaneously 

[97], a model structure that only allowed for cleavage of a single glutamate was 

found to be superior in this work. It was also assessed whether loss of each 

MTXGluX is supported in the model. This hypothesis was of two fold interest. 

Firstly, Morrison and Allegra [8] found that longer chained MTXGluX are 

likely to leave human breast cancer cells in vitro, although the multi drug 

resistance transporters involved in the efflux of MTX have a much lower 

affinity to MTX polyglutamates compared to the parent drug. Secondly, as 

RBCs were used as the matrix for the MTX PK data analysed here, destruction 

of RBCs should also result in a loss of all MTXGluX from the system. In fact, 

based on the developed model, loss of all MTXGluX from the system was 

found to be superior to loss of only MTXGlu1. However, further stability issues 
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became apparent during the structural hypothesis tests and not all postulated 

models were identifiable. Therefore, it was not possible to differentiate between 

loss of MTXGluX due to transport or due to RBC destruction. This again 

highlights the need for a formal identifiability analysis of all proposed model 

structures. 

Polymorphisms affecting genes coding for enzymes and transporters 

relevant to the PK or PD of MTX have gained an increasing interest as potential 

biomarkers to explain some of the variability seen between patients in the 

efficacy and toxicity of MTX treatment [106]. However, to date no single 

polymorphism has emerged that would be suitable as predictor for the 

variability seen between individuals. This is largely due to a lack of evidence 

from association studies, as the observed results can often not be confirmed in 

replicate studies. In this study, it was tested whether genotypes that were 

considered relevant to the intracellular PK of MTX are significant covariates in 

the developed population model. Genotypic information available in the data 

set included polymorphisms relevant to the transporters facilitating influx and 

efflux of MTX as well as GH. However, none of the tested polymorphisms 

provided a significant improvement in the goodness of fit when tested as a 

covariate on the corresponding PK parameters in the model. This result was 

not surprising as the available data set only contained genotypic information 

for 46 individuals. Given the low frequency of some of the alleles in the general 

population such a small data set is likely to be underpowered to show a 

significant effect. In addition, if different polymorphisms with opposing effects 

on the intracellular MTX concentrations occur in the same individual, then the 

observed net effect may be too small to show a significant effect when only a 

single polymorphism is tested as covariate as it was done here. Therefore, a 

larger sample size is required to provide enough power to reassess the 

significance of genotypic covariates in future studies. Such an analysis should 

also take into account the opposing effects of different polymorphisms by using 

genotypic indices rather than single polymorphisms as covariates in the model.  
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No plasma data were available in this analysis and the parameters 

describing the plasma PK of MTX in the developed model were fixed to 

population values obtained from literature [91]. Nevertheless, it was tested 

whether predictable between subject variability (BSV) in the otherwise fixed 

plasma PK of MTX could be accounted for by including phenotypic covariates 

in the model. Estimated glomerular filtration rate (eGFR) adjusted for body 

surface area (BSA) was tested as a covariate on plasma clearance of MTX based 

on three different covariate model structures. Out of these, BSA adjusted eGFR 

as covariate on renal clearance together with allometrically scaled total body 

weight as a covariate on non-renal clearance was found to be the best covariate 

model and resulted in an overall improvement in the model based on change in 

objective function value. However, in future studies MTX plasma 

concentrations should also be obtained to allow for quantification of random as 

well as predictable BSV in the plasma PK of MTX. 

7.3. Future Prospects 

7.3.1. RBC survival 

With the currently available labelling methods for RBCs it is only possible 

to obtain a relative measure of the mean RBC lifespan as all methods are 

inherently flawed. Such a relative lifespan value is sufficient when comparing 

study groups, e.g. healthy controls versus CKD patients, or to assess RBC 

survival before and during treatment, e.g. with recombinant human 

erythropoietin. Yet, knowledge of the underlying RBC lifespan distribution and 

quantification of the processes involved in RBC destruction would be desirable 

to obtain a better insight into how pathological conditions such as CKD, sickle 

cell anaemia or haemolytic diseases affect the survival of RBCs. In combination 

with more informative labelling techniques, a semi-mechanistic model for RBC 

survival as was developed in this thesis might prove useful to obtain a better 

understanding of these pathologies in future studies. 

In addition, knowledge of RBC survival is crucial when dealing with RBC 

derived clinical biomarkers, such as glycated haemoglobin (HbA1c). HbA1c is 
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the most commonly used biomarker for glycaemic control in diabetic patients, 

and it has also been suggested that elevated HbA1c concentrations are sufficient 

to diagnose diabetes [210]. However, the extent of glycation of haemoglobin 

does not only depend on blood glucose concentrations but also the lifespan of 

RBCs. A reduced RBC survival, for example in patients with CKD, results in 

lower HbA1c concentrations [124], which can lead to a false assumption of 

adequate glycaemic control or an incorrect negative diagnosis for diabetes. The 

use of mathematical models to describe the relationship between HbA1c and 

RBC survival would allow interpretation of corrected HbA1c values in patients 

with impaired RBC survival. Several such attempts have been proposed in 

literature [79,211,212]; however all employ simplified descriptions of RBC 

survival based on top-down modelling approaches. These empirical models of 

RBC survival might not hold true in a different population, such as CKD 

patients, and the limitations associated with RBC labelling methods are usually 

not taken into account. By using a mechanism based modelling approach these 

limitations might be overcome. In future work, the RBC survival model 

proposed here could be extended by including the mechanism of intracellular 

glycation of haemoglobin similar to the approach presented by Alskär et al. 

[213] which was based on an empirical RBC survival model [80]. Such an 

extended model could then be evaluated based on RBC survival data and 

HbA1c measurements obtained in additional clinical studies. 

Similarly, the proposed RBC survival model could also form the basis of a 

more mechanism focussed model for the intracellular PK of MTX in RBCs in 

the future. The empirical RBC PK model developed here did not a priori take 

into account the destruction of RBCs and subsequent loss of MTX from the 

system. However, as mentioned above, it became apparent during the 

hypothesis testing analysis that a loss of MTXGluX from RBCs is supported 

even under this empirical model structure. Yet, it was not possible to determine 

whether this loss can be attributed to RBC destruction only or includes a 

transporter mediated efflux process, as the empirical model suffers from 

stability issues. Incorporating RBC survival in a mechanistic model for the 
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intracellular PK of MTX could facilitate the delineation of these processes in 

future work. 

7.3.2. RBCs as matrix for pharmacokinetic data 

When dealing with RBC derived PK data, such as the MTX data in this 

thesis, it is important to bear in mind the specific physiological characteristics 

of RBCs. As mature RBCs are anucleate cells, they lack the ability to perform 

cell division and self renewal, and only have a limited enzyme and transporter 

capacity. This means that intracellular metabolism as well as influx and efflux 

processes in RBCs differ considerably from other cell lines, as was seen for the 

RBC MTX PK when compared to human breast cancer cells as analysed by 

Morrison and Allegra [8] or lymphocytes as studied by Panetta et al. [90]. 

Furthermore, RBCs normally survive for several months in the human 

circulation. This survival time should be accounted for when RBC derived PK 

data is analysed.  

It is also important to realise that RBC derived PK data also contains 

information on RBC survival. Drugs that accumulate in RBCs could be used to 

determine RBC survival by analysing their RBC PK profile. Such an analysis 

should ideally be undertaken using drugs that provide cleaner data than MTX 

does. Thus, the ideal drug should accumulate intracellular preferably without 

the ability to leave the cells through either active transport or passive diffusion. 

Furthermore, it should not show an extensive intracellular metabolism to avoid 

stability issues as were noticed for the MTX RBC PK model, and should not be 

toxic to the cell. If the observed rate constant of loss from the system is the 

same for all tested drugs, then it is likely that this is a system parameter related 

to RBC destruction rather than a drug specific parameter.  

In fact, a strong indicator for such a system related RBC loss parameter 

could be obtained if future studies on the MTX RBC PK verified that all 

MTXGluX are lost from the system at the same rate. Another candidate for such 

an analysis is the anti-malaria drug mefloquine, which accumulates in RBCs 

due to binding to haemoglobin and the cell membrane [214]. The slow loss of 
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mefloquine from the RBCs observed by San George et al. [214] could be 

quantified in further in vitro experiments and thus accounted for in an RBC PK 

model for mefloquine as a fixed parameter. Clinical data obtained in in vivo 

studies would then allow estimating a loss of mefloquine from the system that 

is potentially specific for RBC destruction. 

7.3.3. RBC MTX concentrations as biomarker for low-dose MTX treatment 

The suitability of RBC MTX concentrations as a biomarker to monitor 

low-dose MTX treatment has not only been discussed in literature for the 

treatment of RA [114,117], but also for the treatment of other inflammatory 

autoimmune diseases. These include psoriasis [215] and inflammatory bowel 

disease [216], where MTX is used as second line immunosuppressant. As for 

RA, the doses of MTX required to reach therapeutic effect in these conditions 

incur significant variability between patients. In addition, MTX plasma 

concentrations lack a clear correlation with clinical outcomes of MTX treatment 

and are considered unsuitable as a biomarker, not only in RA but also in 

psoriasis as well as inflammatory bowel disease. As an alternative, RBC MTX 

concentrations could be useful predictors for MTX efficacy and/or toxicity as 

they are a measure of cumulative exposure to the drug due to the intracellular 

accumulation of MTX, similar to the area under the curve of a plasma 

concentration time curve or measuring HbA1c as marker of cumulative blood 

glucose exposure. Plasma concentrations of a drug, or blood glucose 

concentrations for that matter, only give an indication of the momentary 

situation, i.e. whether the drug concentrations are inside or outside of the 

therapeutic window or whether the patient is hyper- or hypoglycaemic. 

Measures of cumulative exposure, on the other hand, often show a better 

correlation with long-term effects, e.g. treatment success or diabetic 

complications. 

Although the population RBC PK model for MTX developed in the third 

part of this thesis was built based on clinical data obtained in patients with RA, 

it can also be applied to other clinical data of low-dose MTX treatment. Thus, in 
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future work this model could not only facilitate the quest for a biomarker to 

monitor MTX treatment in RA, but also in other inflammatory autoimmune 

diseases. For this purpose, the developed population PK model should be 

extended towards a full population PKPD model, where the MTX RBC 

concentrations are linked with PD outcomes such as decrease in disease activity 

or occurrence of adverse effects. At the moment, it is unclear whether the PK of 

the parent drug MTXGlu1, of any of the individual polyglutamated MTX 

metabolites (MTXGlu2 – MTXGlu5), or of a particular combination of these 

MTX species is the main driving force of the PD effects of MTX. Using a 

population PKPD modelling approach, the PK profile of each MTXGluX and 

also their combinations can be tested to explore the driving force for the PD 

effect. This would then allow determination of which, if any, of these is the 

most suitable biomarker for a particular clinical outcome of MTX and could 

therefore be used to monitor MTX treatment. 

Nevertheless, it needs to be considered that RBCs are not located on the 

postulated causal pathway of MTX action. In future work RBC MTX 

concentrations might be shown not to have a clinically relevant correlation with 

clinical outcomes of MTX treatment, and therefore not to be suitable 

biomarkers for low-dose MTX treatment in RA or other inflammatory 

autoimmune diseases. In this case, focus should be given to alternative 

biomarkers that could be purported to have a causal relationship with clinical 

outcomes of MTX treatment. Recently, van Haandel et al. [217] suggested MTX 

concentration measured in peripheral blood mononuclear cells (PBMC) as an 

alternative biomarker for MTX treatment in juvenile arthritis. PBMCs are white 

blood cells with a single nucleus, i.e. macrophages, monocytes and 

lymphocytes. These cells play an important role in the immune response and 

also autoimmune diseases. In contrast to RBCs, PBMC are directly involved in 

the anti-inflammatory effect of MTX, and intracellular MTX concentrations in 

PBMCs are thus more likely to have a causal relationship with clinical 

outcomes of MTX treatment. MTX has been shown to inhibit the proliferation 

of PBMCs [218] as well as to decrease the production of pro-inflammatory 
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cytokines and increase the production of anti-inflammatory cytokines by 

PBMCs [219]. Thus, under the assumption that these effects are directly related 

to the intracellular accumulation of MTX, PBMC MTX concentrations are 

promising candidates as biomarkers to monitor MTX treatment in 

inflammatory autoimmune diseases. 

In the case of RA, it would also be possible to obtain mononuclear cells 

directly from the synovial fluid instead of extracting them from peripheral 

blood samples as it was done in the study by van Haandel et al. [217]. 

Assuming that MTX acts locally in the joints, i.e. at the primary site of 

pathology, this would allow measuring intracellular MTX concentrations 

directly at the site of action and in the postulated effect compartment, the 

mononuclear cells. For a PKPD analysis, this is a highly unusual, but probably 

advantageous situation that warrants further exploration in future studies. 

7.4. Conclusion 

Two different approaches to model RBC derived clinical data were 

successfully applied in this thesis. 

The bottom-up approach used in Part II resulted in the development of a 

novel statistical model for the survival time of RBCs that is able to account for 

plausible physiological mechanisms of RBC destruction, and the model was 

successfully applied to clinical data.  

The population PK model for RBC MTX concentrations developed using a 

top-down approach in the third part of this thesis is capable of describing the 

time course of accumulation of MTX and its polyglutamated metabolites inside 

RBCs, and can be used as the basis for a full PKPD model for low-dose MTX 

treatment in RA in future work. 

Ultimately, both models will require updating and refinement as more 

data and mechanistic knowledge becomes available in the future. Model 

development and modelling of clinical data should thus be seen as dynamic 

and iterative processes of learning and confirming [220]. 
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These appendices contain additional material related to the individual chapters 

in this thesis.  

Some of these materials have been published in peer-reviewed publications or 

were included in my Postgraduate Certificate thesis as indicated accordingly. 
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A.1.1. Rejection Sampling Method 

Given a known probability density function (pdf) f(x) with a 

corresponding cumulative distribution function F(x), which is not easily 

invertible, a sample of x-values that yields a similar pdf can be derived by the 

following steps [81,82,84,85]: 

1) Find another function g(x) that lies above f(x) everywhere, i.e. f(x)  g(x). 

The simplest case is to draw a straight line through the maximum of f(x), 

if f(x) has an absolute maximum fmax(x) in the desired interval of x. 

2) Generate a random value xi. 

3) Generate a random uniform number ui distributed between 0 and 1. 

4) Evaluate f(x) for the value xi. 

5) Calculate the ratio ri of f(xi) and g(xi): ri = f(xi)/g(xi) 

6) Accept xi if ui  ri, otherwise reject it. 

7) Repeat steps 2 – 6 until the desired number of xi has been accepted or the 

maximum number of repetitions has been reached. 

 

App Fig. 1.1.1: Illustration of the rejection sampling method for RBC lifespans [81]. 
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A.1.2. Postulated pathway of action of MTX and MTXPGs 

 

App Fig. 1.2.1: Illustration of the pathway of action of MTX and MTXPGs [221]. 

App Fig. 1.2.1 was obtained with permission of the copyright owner, the 

PharmGKB online database (http://www.pharmgkb.org/pathway/PA2039#, 

accessed on 08.06.2012) [222]. A detailed description of the figure is given 

online. 

http://www.pharmgkb.org/pathway/PA2039
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A.2.1. Estimation of RBC specific parameters – Reduced data sets 

 

App Fig. 2.1.1: Upper panel: Profile of the 200 normalised histogram coordinates (blue) 

compared with the empirically fitted pdf (green) and the estimated pdf (red) based on all 

200 points. Lower panel: Difference plots for empirical and estimated pdf fits with area 

between difference curve and null (AUC) 
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App Fig. 2.1.2: Upper panel: Profile of the 200 normalised histogram coordinates (blue) 

compared with the empirically fitted pdf (green) and the estimated pdf (red) based on 

100 points (pink). Lower panel: Difference plots for empirical and estimated pdf fits 

with area between difference curve and null (AUC). 
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App Fig. 2.1.3: Upper panel: Profile of the 200 normalised histogram coordinates (blue) 

compared with the empirically fitted pdf (green) and the estimated pdf (red) based on 50 

points (pink). Lower panel: Difference plots for empirical and estimated pdf fits with 

area between difference curve and null (AUC). 
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App Fig. 2.1.4: Upper panel: Profile of the 200 normalised histogram coordinates (blue) 

compared with the empirically fitted pdf (green) and the estimated pdf (red) based on 25 

points (pink). Lower panel: Difference plots for empirical and estimated pdf fits with 

area between difference curve and null (AUC). 
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App Fig. 2.1.5: Upper panel: Profile of the 200 normalised histogram coordinates (blue) 

compared with the empirically fitted pdf (green) and the estimated pdf (red) based on 

twelve points (pink). Lower panel: Difference plots for empirical and estimated pdf fits 

with area between difference curve and null (AUC). 
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App Fig. 2.1.6: Upper panel: Profile of the 200 normalised histogram coordinates (blue) 

compared with the empirically fitted pdf (green) and the estimated pdf (red) based on 

six points (pink). Lower panel: Difference plots for empirical and estimated pdf fits with 

area between difference curve and null (AUC). 
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A.2.2. Improved MATLAB code for the RBC lifespan model 

% RBC lifespan model 

% 02/09/2009 

% Julia Korell 

 

 

clc 

clear all 

 

 

% Characteristics of experiment 

Tmax = 200;         % how long the experiment will run for 

Tbirth = 1;         % how long birth will occur for 

prod_rate = 1000;   % daily production rate of RBCs 

t = 1:1:Tmax; 

 

 

% load previously generated RBC lifespan values (~1.8Mio.) 

load LS_sample_RBCs.mat     % R  

 

all_LS = [];                  

all_BD = [];                 

birthdates = 1:Tbirth;      % days of birth 

 

 

for ij = 1:prod_rate 

    % sampling LS for each day with replacement 

    lifespan = randsample(R,Tbirth,true);   

    all_LS = [all_LS;lifespan'];    % LS matrix 

    all_BD = [all_BD;birthdates];   % birthdate matrix 

    if rem(ij,100) == 0 

       disp(ij)                                  

    end                                              

end 

 

% death of each RBC 

clocklife = all_LS + all_BD;     

 

 

for ijk = 1:Tmax 

       for ij = 1:prod_rate  

           for jk = 1:Tbirth  

               % check for being born 

               if jk > ijk                          

                    alive(ij,jk) = 0;    

               % check for being dead   

               else if clocklife(ij,jk) < ijk        
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                        alive(ij,jk) = 0; 

                   else 

                        alive(ij,jk) = 1; 

                   end 

               end 

           end 

       end 

        

     % living RBCs per day 

     total_alive(ijk) = sum(sum(alive));     

     if rem(ijk,100) == 0 

        disp(ijk)                             

    end                                              

end 

 

 

figure(1) 

plot(t,total_alive)  

xlabel('time (days)') 

ylabel('number of RBCs') 

 

 

% lifespan distribution in experiment 

LS_dist = reshape(all_LS,1,numel(all_LS));  

 

figure(2)                    

hist(LS_dist,100)        

xlabel('lifespan (days)') 

ylabel('number of sampled lifespans') 
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A.2.3. Exchange algorithm implemented in MATLAB 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%                GENERALIZED EXCHANGE ALGORITHM                % 

%                   04/03/2010  Julia Korell                   % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [XOPT OBJ] = exchange(FUN,XSPACE,NX,options,varargin) 

 

% EXCHANGE finds those values XOPT that maximize the objective  

% function FUN over the discrete space XSPACE  

% 

% Required input arguments: 

%   FUN     objective function (needs to be specified as @FUN) 

%   XSPACE  discrete space to optimize over 

%   NX      number of values to optimize for 

% 

% Available options (define in structure options):  

%   maxit   number of maximum iterations (default = 1e4) 

%  

% Define problem dependent variables V1,V2... as 

%   XOPT=EXCHANGE(@FUN,XSPACE,NX,options,V1,V2,...) 

% Pass options=[] to use default settings. 

% 

% Display of intermediate results can be switched on/off in   

% lines 70/71.  

% Display of counter of iterations can be switched on/off or  

% modified in lines 82/83. 

 

 

tic  

 

if nargin < 3, error('requires at least three input arguments'); 

end 

if nargin < 4 

    options = struct('maxit',1e4); 

else 

    if ~isfield(options,'maxit') 

        options.maxit = 1e4; 

    end 

end 

 

 

maxit = options.maxit;   % maximum number of iterations 

iter = 0;   

numex = 0;  
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x0 = XSPACE(1:NX);  

OBJ = feval(FUN,x0,varargin{:});  

 

 

for i = 1:1:maxit 

  

    if i == 1  

        xex(i,:) = x0(randperm(length(x0)));   

        X = x0;  

    else 

        Xold = xex(i-1,:);   

        xex(i,:) = Xold(randperm(length(Xold)));   

        X = xex(i,:);   

    end 

     

% exchange time points and evaluate objective function 

    for j = 1:1:length(X) 

        for k = 1:1:length(XSPACE) 

            xex(i,j) = XSPACE(k);  

            OBJ_new = feval(FUN,xex(i,:),varargin{:});  

             

% accept new value if OBJ_new is bigger than the previous  

            if OBJ_new > OBJ    

                OBJ = OBJ_new; 

%                 disp('updated objective function value') 

%                 disp(OBJ)    

                numex = numex+1;   

                break 

            else 

                xex(i,j) = X(j); 

            end         

        end 

    end 

     

    iter = iter+1;    

    if rem(iter,100)==0 

        disp('iteration') 

        disp(iter)        

    end 

     

    if i>1   % no further changes 

        if sort(xex(i,:),2) == sort(xex(i-1,:),2) 

            break 

        end 

    end 

end 

 

XOPT = sort(xex(i,:));    % optimal x-values 
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tElapsed = toc; 

 

% Display results 

if iter == maxit 

    disp ('maximum number of iterations reached') 

    disp ('time elapsed') 

    disp (tElapsed) 

else 

    disp('number of iterations') 

    disp(iter)   

    disp('number of exchanges') 

    disp(numex) 

    disp('time elapsed (sec)') 

    disp(tElapsed) 

    disp('optimal x-values') 

    disp(XOPT) 

    disp('objective function value') 

    disp(OBJ) 

end 
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A.3.1. Equivalent functions of survival time for the RBC model  

According to the introduction on survival analysis in this thesis (Section 

1.1.3), the survival time can be expressed as different mathematical functions 

which are all mathematically equivalent, such as the survival function S(t), the 

hazard function h(t), and the probability density distribution (pdf) f(t). 

Here, the equations of these functions with respect to the proposed RBC 

survival model are presented, where FW stands for Flexible Weibull and RAW 

for Reduced Additive Weibull, describing the two distributions underlying the 

combined model [83]. Note, the full notation of the hazard function is not 

shown due to its high level of complexity.  
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App Eq. 3.1.1: Probability density function f(t) of the RBC lifespan model proposed in 

Chapter 2. 
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App Eq. 3.1.2: Survival function S(t) of the RBC survival model proposed in Chapters 

3&4. 
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App Eq. 3.1.3: Corresponding hazard function h(t) of the proposed model.  
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A.3.2. Loss of label due to vesiculation, decay and elution 

The following equations describe the loss of a label based on vesiculation, 

radioactive decay and elution only. Based on these equations the loss of label in 

addition to the loss due to death of RBCs has been included into the model in 

Chapter 3 (Sections 3.4.2 & 3.4.3). 

  v
vv tkNtN  0  

App Eq. 3.2.1: Loss of label due to vesiculation. 

 

  Crtt
d NtN 2/1/

0 2


  

App Eq. 3.2.2: Loss of label due to radioactive decay, e.g. of 51Cr. 

 

  eltt
e NtN 2/1/

0 2


  

App Eq. 3.2.3: Loss of label due to elution. 

where N0 is the total number of labelled RBCs at time 0, and Nx(t) is the 

remaining number of labelled cells at time t after loss due to the individual process 

vesiculation Nv(t), decay Nd(t) or elution Ne(t), while kv , v, t1/2Cr and t1/2el are defined as 

in Chapter 3. 
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A.3.3. Final MATLAB codes for the RBC survival model 

The following code describes the final RBC survival model based on the 

proposed survival function and can account for flaws associated with certain 

RBCs labelling methods, such as reuse of the label, radioactive decay, 

vesiculation and elution. 

A.3.3.1. General code for the survival function 

function smix = survival_mix(para,t) 

 

% survival function of the mixed model 

% parameter vector para needs 6 input items, ordered according  

% to a,b,x,y,z,p 

 

a = para(1); 

b = para(2); 

x = para(3); 

y = para(4); 

z = para(5); 

p = para(6); 

 

 

smix = p.*(exp(-exp(x.*t-y./t)-z.*t))+(1-p)*(exp(-((a.*t).^b) - 

(a.*t).^(1/b))); 

 

 

A.3.3.2. Code for a cohort labelling method 

function Nlabel = survival_model_cohort_reuse(t,a,b,x,y,z,p, 

Tbirth, prodrate, reuse_fraction,P) 

 

% Function for the survival model evaluated for teval 

% For a cohort labelling method with reuse 

% 07/04/2010 

% Julia Korell 

 

% Calls "survival_mix" 

 

%%% SETTINGS %%% 

% t = time course of simulation, needs to be continuous over  

% time!!! 

% Tbirth = time until production occurs 

% prodrate = constant daily production rate 

% reuse_fraction = fraction of lost label reused on following  

% day 

% P = controls vesiculation (0=none, 1=linear, 2=increasing) 

 

para = [a b x y z p]; 

Tmax  = max(t);             % max. time for simulation 

prod = zeros(1,Tmax); 
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prod(1:Tbirth) = prodrate;   

median_LS = 115;        % median RBC lifespan in days 

t80 = median_LS;        % time of 80% loss due to vesiculation 

 

if P == 0 

    kves = 0;           % no vesiculation 

else 

    kves = 0.2/(t80^P); % vesiculation rate per day (loss of Hb) 

end 

 

%%% SIMULATION %%% 

 

for i = 1:1:Tmax        % i = day of birth 

     

    if i==1                            

        reuse(i) = 0;   % no reuse on first day 

    else                % loss from day before 

        loss(i) = sum(N_ves(1:i-1,i-1))-sum(N_ves(1:i-1,i));    

        reuse(i) = loss(i)*reuse_fraction;     % fraction reused  

    end 

     

    ti = t-i;           % time course of survival 

        S(1:(i-1)) = 0;     % not born yet 

    S(i:Tmax) = survival_mix(para,ti(i:Tmax));   

% survival of fraction 

    N(i,:) = (prod(i)+reuse(i))*S; 

    

    % Vesiculation  

    ves(1:(i-1)) = 0; 

    ves(i:Tmax) = (1-kves*(ti(i:Tmax)).^P); 

    N_ves(i,:) =  N(i,:).*ves;   

     

end 

 

Nlabel = sum(N_ves);   % #RBCs corrected for vesiculation 

 

 

A.3.3.1. Code for a random labelling method 

function Nlabel_vde = survival_model_random_loss(t,a,b,x,y,z,p, 

Tbirth,prodrate,half_life_decay,half_life_elution,P) 

 

% Function for the survival model with a random label evaluated  

% for time t 

% Accounting vesiculation, decay & elution to occur 

% 08/04/2010 

% Julia Korell 

 

% RETURNS ONLY DISAPPEARANCE OF LABEL (Tbirth:Tmax)!!! 

% Calls "survival_mix" 

 

%%% SETTINGS %%% 

 

% t = time course of simulation, needs to be continuous over  

% time!!! 



Appendix to Chapter 3 

 272 

 

% Tbirth = time until production occurs = day of random  

% labelling (Tlabel)! 

% prodrate = constant daily production rate 

% half_life_decay = radioactive decay of label (0=none) 

% half_life_elution = elution of label (0=none) 

% P = vesiculation (0=none, 1=linear, 2=increasing with age) 

 

para = [a b x y z p]; 

Tmax  = max(t);         % max. time for simulation 

prod = zeros(1,Tmax); 

prod(1:Tbirth) = prodrate; 

median_LS = 115;        % median RBC lifespan in days 

t80 = median_LS;        % time of 80% loss due to vesiculation 

Tlabel = Tbirth;        % time of labelling = stop of production 

t_lab = 0:Tmax-Tlabel;  % days after labelling 

 

 

if half_life_decay == 0 

    decay = 1;          % no decay of label 

else 

    decay = 2.^(-(t_lab./half_life_decay));   % decay per day 

end 

 

if half_life_elution == 0           % no elution of label 

    elution = 1;                     

else 

    elution = 2.^(-(t_lab./half_life_elution));  

% elution per day 

end 

 

if P ==0 

    kves = 0;           % no vesiculation 

else 

    kves = 0.2/(t80^P); % vesiculation rate per day (loss of Hb) 

end 

 

 

%%% SIMULATION %%% 

 

for i = 1:1:Tmax 

    ti = t-i; 

     

    S(1:(i-1)) = 0;                             % not born yet 

    S(i:Tmax) = survival_mix(para,ti(i:Tmax));   

% survival of fraction 

     

    N(i,:) = prod(i)*S; 

     

    % Vesicualtion  

    ves(1:(i-1)) = 0; 

    ves(i:Tmax) = (1-kves*(ti(i:Tmax)).^P); 

    N_ves(i,:) =  N(i,:).*ves;   

end 

 

Ntot = sum(N);          % summing up cells per day 

Ntot_ves = sum(N_ves);  % #RBCs corrected for vesiculation 
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% Disappearance of label 

Nlabel_ves = Ntot_ves(Tlabel:Tmax); 

Nlabel_vd = Nlabel_ves.*decay;        

Nlabel_vde = Nlabel_vd.*elution;  

% observed disappearance of label 
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A.3.4. Hypercube design  

The following table presents the 26 possible combinations of the lower (L) 

and upper (H) point estimates giving the vertexes in the hypercube design 

space for parameter estimation. 

App Tab. 3.4.1: Vertexes of the hypercube design space for the robust optimal design. 

Vertex r1 r2 s1 s2 c m Vertex r1 r2 s1 s2 c m 

1 H L L L L L 33 L L L L L L 

2 H L L L L H 34 L L L L L H 

3 H L L L H L 35 L L L L H L 

4 H L L L H H 36 L L L L H H 

5 H L L H L L 37 L L L H L L 

6 H L L H L H 38 L L L H L H 

7 H L L H H L 39 L L L H H L 

8 H L L H H H 40 L L L H H H 

9 H L H L L L 41 L L H L L L 

10 H L H L L H 42 L L H L L H 

11 H L H L H L 43 L L H L H L 

12 H L H L H H 44 L L H L H H 

13 H L H H L L 45 L L H H L L 

14 H L H H L H 46 L L H H L H 

15 H L H H H L 47 L L H H H L 

16 H L H H H H 48 L L H H H H 

17 H H L L L L 49 L H L L L L 

18 H H L L L H 50 L H L L L H 

19 H H L L H L 51 L H L L H L 

20 H H L L H H 52 L H L L H H 

21 H H L H L L 53 L H L H L L 

22 H H L H L H 54 L H L H L H 

23 H H L H H L 55 L H L H H L 

24 H H L H H H 56 L H L H H H 

25 H H H L L L 57 L H H L L L 

26 H H H L L H 58 L H H L L H 

27 H H H L H L 59 L H H L H L 

28 H H H L H H 60 L H H L H H 

29 H H H H L L 61 L H H H L L 

30 H H H H L H 62 L H H H L H 

31 H H H H H L 63 L H H H H L 

32 H H H H H H 64 L H H H H H 
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A.4.1. Individual fits obtained in the two-stage approach [223] 

 

App Fig. 4.1.1: Individual fits obtained in the two-stage approach for estimating senescence in controls. 
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App Fig. 4.1.2: Individual fits obtained in the two-stage approach for estimating random destruction in controls. 
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App Fig. 4.1.3: Individual fits obtained in the two-stage approach for estimating senescence in CKD patients. 
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App Fig. 4.1.4: Individual fits obtained in the two-stage approach for estimating random destruction in CKD patients. 
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A.4.2. Additional analysis – Testing rHuEPO as covariate 

A.4.2.1. Materials & Methods 

Out of the 14 patients with chronic kidney disease (CKD) on 

haemodialysis studied by Vos et al. [165], eleven received human recombinant 

erythropoietin (rHuEPO), two of those with additional iron supplementation, 

while three patients received iron supplementation alone without 

administration of rHuEPO or any other erythropoiesis stimulating agent. It 

should be noted that there is a high concordance between CKD and rHuEPO 

and although not 100% the results delineating these components should be 

viewed with caution. 

Based on the population approach using MONOLIX 1.1 that was 

described in Chapter 4 (Section 4.4.4), it was tested whether the application of 

rHuEPO is a significant covariate on RBC survival. Two models were 

considered: 1) including rHuEPO on its own as a covariate (rHuEPO model); 

and 2) including rHuEPO and CKD as covariates together (rHuEPO & CKD 

model). Significance of the covariates compared to the base model without 

covariate effect was assessed globally based on the likelihood ratio test (LRT) 

and locally based on the Wald test for the corresponding covariate coefficients 

EPO and CKD (please refer to Section 4.4.4, Equation 4.10 for the 

implementation of the covariate model in MONOLIX) . 

As before, it was also investigated based on the objective function value 

(OFV) which destruction mechanism is preferred for these new models: 

senescence (Scenario A) or random destruction (Scenario B). 

  



Appendix to Chapter 4 

281  

 

A.4.2.2. Results 

An overview of the results for this analysis is given in App Tab. 4.2.1. 

With respect to the preference of destruction mechanism, again estimating 

random destruction is preferred over estimating senescence based empirically 

on the higher OFVs across all models tested in this additional analysis for 

Scenario B. 

Inclusion of rHuEPO as a covariate was found to be significant based on 

both, Wald test as well as LRT. However, CKD was found not to be a 

significant covariate, both locally as well as globally, once rHuEPO had been 

added as covariate in the model. 

These results are discussed further in Chapter 4 (Section 4.7.1). 
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App Tab. 4.2.1: Fixed and random effect parameter estimates (%SE) for the population approach – Testing rHuEPO as covariate. 

Parameter Estimates Description 

Scenario A: Estimating 2ŝ  

 Base model rHuEPO model rHuEPO & CKD model  

2ŝ  (days) 162.49 (6.9) 200.45 (5.6) 199.89 (6.3) population mean estimate 

CKD - - 0.0493 (304 ns) covariate factor of CKD 

EPO - -0.5399 (16.2) -0.4984 (30.9) covariate factor of EPO 

 0.1117 (34.1) 0.0385 (39.0) 0.0400 (40.3) between subject variance 

L  (days) 62.8  69.21 69.12 mean RBC lifespan 

L  (days) - 53.81  53.55 mean RBC lifespan with covariate effect(s) 

2add 2.96 (12.5) 2.54 (12.2) 3.14 (12.9) additive error (variance) 

CVprop 0.0251 (12.5) 0.0295 (12.2) 0.0243 (12.9) proportional error (coefficient of variation) 

LL -780.10 -769.65 -769.62 log likelihood 

(ns) = Parameter not significant based on Wald test 
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App Tab. 4.2.1: Continued. 

Parameter Estimates Description 

Scenario B: Estimating ĉ  

 Base model rHuEPO model rHuEPO & CKD model  

ĉ  (days-1) 0.0133 (7.3) 0.0109 (6.4) 0.0107 (6.5) population mean estimate 

CKD - - 0.0113 (310.3 ns) covariate factor of CKD 

EPO - 0.5449 (17.6) 0.5036 (33.1) covariate factor of EPO 

 0.1296 (18.6) 0.0496 (37.1) 0.0504 (36.9) between subject variance 

L  (days) 56.0 62.74 63.15 mean RBC lifespan 

L  (days) - 44.78 44.79 mean RBC lifespan with covariate effect(s) 

2add 2.27 (12.4) 2.25 (12.7) 2.18 (12.6) additive error (variance) 

CVprop 0.0234 (12.4) 0.0240 (12.7) 0.0247 (12.6) proportional error (coefficient of variation) 

LL -752.12 -742.10 -742.03 log likelihood 

 (ns) = Parameter not significant based on Wald test 

 



Appendix to Chapter 4 

 284 

 

A.4.3. Additional analysis for patients on peritoneal dialysis 

A.4.3.1. Materials & Methods 

Vos et al. studied an additional cohort of five CKD patients undergoing 

peritoneal dialysis (PD) [165], but did not recruit age and sex matched controls 

for these patients All PD patients received rHuEPO treatment, one with 

additional iron supplementation. 

Here, the RBC survival in these patients was estimated based on the two-

stage approach described in Chapter 4 (Section 4.4.3). The resulting apparent 

mean RBC lifespan was compared with the results of the healthy controls as 

well as the CKD cohort undergoing haemodialysis (HD) based on a two-tailed 

t-test assuming unequal variances. Again, it was also tested whether an 

accelerated senescence (Scenario A) or an increased random destruction 

(Scenario B) is preferred as underlying destruction mechanism in these 

patients. 

A.4.3.2. Results 

App Tab. 4.3.1 shows an overview of the results for this analysis. The 

calculated apparent mean RBC lifespan falls between those estimated for 

controls and HD patients for both scenarios. No statistically significant 

difference compared to either of these two groups was observed. 

In two out of the five patients estimation of senescence was preferred, 

while the remaining three had a better fit when estimating random destruction. 

Due to the small number of patients in this cohort, the slight preference 

towards random destruction is less conclusive as for the controls and HD 

patients, and the PD patients were not included in the population analysis in 

Chapter 4. 

The results of this two-stage analysis are discussed further in Chapter 4 

(Section 4.7.2). 
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App Tab. 4.3.1: Results for the PD patients using the two-stage approach. 

 
PD 

group 

p value vs. 

controls 

p value vs. 

HD patients 
Description 

Scenario A: Estimating senescence 2s   

2s  (days) 170.00 0.0529 0.4959 population mean  

s2 (days2) 4059.76   
BSV of population 

mean* 

2sL  (days) 63.2 0.0663 0.4960 mean RBC lifespan 

L,s2 (days2) 120.1   BSV of mean lifespan* 

Scenario B: Estimating random destruction c   

c  (days-1) 0.0146 0.1252 0.4582 population mean  

c (days-2) 3.44 x 10-5   
BSV of population 

mean* 

cL
 (days) 55.4 0.0976 0.4483 mean RBC lifespan 

L,c (days2) 195.2   BSV of mean lifespan* 

* BSV = between subject variance 
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A.5.1. Imputation of missing covariates 

In the data set of the oral study, height was not recorded for eight 

individuals; however this covariate was required for the calculation of BMI in 

this analysis. Therefore, multiple linear regression was conducted in the 

remaining 40 patients and a single value for height was imputed for these eight 

individuals based on the parameter values from this regression analysis. 

Firstly, the correlation between height and other covariates in the data set 

was determined to obtain reasonable regression variables. For this, a simple 

linear regression was conducted in MATLAB. Weight, sex (0 = females, 1 = 

males) and age were chosen as initial predictive variables. App Fig. 5.1.1 shows 

the corresponding regressions of height against these covariates. Note, that for 

weight, the regression analysis was split into males and females (i.e. resulting 

in a multiple linear regression analysis), as a difference between both sexes in 

the relationship of height with weight was expected a priori. 

Based on these results, weight and sex were chosen as regression 

variables and a multiple linear regression was conducted without (App Fig. 

5.1.2 and App Fig. 5.1.2) and with an interaction (App Fig. 5.1.3 and App Fig. 

5.1.3) between weight and sex. 

The regression including an interaction term between sex and weight 

resulted in a better correlation (R2 = 0.52 compared to R2 = 0.50 without 

interaction). Therefore, the regression with interaction was used to impute the 

missing values for height in the data set: 

HT = 0.21WT + 19.69SEX – 0.14WTSEX +150.25 

App Eq. 5.1.1: Imputation of height (HT) based on weight (WT) and sex, where SEX = 

0 for females and SEX = 1 for males. 
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App Fig. 5.1.1: Correlation between height and other covariates in the data set. 

 

 

App Fig. 5.1.2 & App Eq. 5.1.2: Regression of height (HT) against weight (WT) and 

sex without interaction. Blue = males (SEX = 1), red = females (SEX = 0). 
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App Fig. 5.1.3 & App Eq. 5.1.3:  Regression of height (HT) against weight (WT) and 

sex with interaction. Blue = males (SEX = 1), red = females (SEX = 0). 
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A.5.2. NONMEM code for the final parent drug model 

;RBC MTXGlu1 parent model 

;combined data set BASED ON AVERAGE of replicate measurements 

;M3 to handle BLQ: compute joint LH 

;PK model - parent: 

;2cmpt PK model for MTX based on article by Hoekstra et al. 

;(2004) 

;combined error model 

;first-order uptake and elimination from RBCs, elimination coded 

;as clearance 

;LBW, [Hb] and MCV as covariates on VRBCs 

;no BSV on CLRBCs 

 

 

$PROBLEM MTXGlu1 MBP41 M3 

 

 

$INPUT  ID TIME AMT ROUTE II ADDL DVID CMTX OCC DV=AVE MDV 

EVID BLQ STUDY STARTSTOP HB MCV HEIGHT WEIGHT AGE SEX 

 

$DATA  MTX_data.csv IGNORE=# 

IGNORE=(DVID.GE.2,OCC.EQ.2) 

 

$SUBROUTINE ADVAN5 

 

 

$MODEL NCOMP=4  

 COMP=(ABS,DEFDOSE)  

 COMP=(PLASMA)  

 COMP=(PERIPH) 

 COMP=(RBCGLU1) ; Parent drug MTXGlu1 in RBCs 

 

$PK 

 ; COMPARTMENTS 

 IF(DVID.EQ.0) THEN 

  CMT=1  ; dose => absorption compartment 

 ELSEIF(DVID.EQ.1) THEN 

  CMT=4  ; observation => parent MTXGlu1 in RBCs 

 ENDIF 

 

 ; LIMIT OF QUANTIFICATION 

 LOQ = 5  ; limit of quantification (nmol/LRBCs) 

  

 ; PLASMA PK FIXED: mean parameter estimates Hoekstra et al  

 IF(ROUTE.EQ.0) THEN  

  F1 = 0.7   ; oral dosing  

  K12 = 0.87   ; (/hrs) oral absorption 

  ALAG1 = 0.36   ; lag-time after oral  

 ELSEIF(ROUTE.EQ.1) THEN 

  F1 = 1   ; sc dosing  

  K12 = 0.36   ; (/hrs) sc absorption 

  ALAG1 = 0.06  ; lag-time after sc  

 ENDIF 
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 K23 = 0.81  ; (/hrs) distribution into peripheral  

 K32 = 0.55  ; (/hrs) redistribution from peripheral

  

CL = 8.4  ; (L/hrs) 

 V2 = 9.6   ; (L) 

 K20 = CL/V2  ; (/hrs) elimination from plasma 

 

 ; COVARIATES 

 IF(NEWIND.LE.1) THEN  

  BMI = WEIGHT/((HEIGHT/100)**2)  ; BMI 

 ENDIF 

 

 IF(NEWIND.LE.1.AND.SEX.EQ.0) THEN  ; LBW females 

  LBW = (9270*WEIGHT)/(8780+244*BMI) 

 ENDIF 

 

 IF(NEWIND.LE.1.AND.SEX.EQ.1) THEN  ; LBW males 

  LBW = (9270*WEIGHT)/(6680+216*BMI) 

 ENDIF   

 

 ; RBC PK PARAMETERS FOR PARENT MTXGLU1 

 TVK24 = THETA(1)      ; kin 

 TVCL4 = THETA(2)       ; CLGlu1 

 TVV4 = THETA(3)*LBW/45*(MCV/90)*(HB/130)   ; VGlu1 

   

 ; RUV PARAMETERS 

 CV21 = THETA(4)  ; CV2prop MTXGlu1 

 ADV1 = THETA(5)  ; ADV MTXGlu1 

 

 ; BSV ON RBC PK PARAMETERS FOR PARENT MTXGLU1 

 K24 = TVK24*EXP(ETA(1)) 

 CL4 = TVCL4 

 V4 = TVV4*EXP(ETA(2)) 

 K40 = CL4/V4 

 

$ERROR 

 ; CONCENTRATIONS 

 CP = A(2)/V2  ; MTXGlu1 plasma concentration 

 CGLU1 = A(4)/V4  ; MTXGlu1 concentration in RBCs 

 

 ; RUV 

 SD1 = SQRT(CV21*CGLU1**2+ADV1) ; combined error MTXGlu1 

 

 ; PARENT MTXGLU1 

   

  F_FLAG=0    ; observation 

  Y=CGLU1+SD1*ERR(1) 

  IPRED=CGLU1 

  IRES=DV-CGLU1 

  IWRES=IRES/SD1 

 

 

 IF(DVID.EQ.1.AND.BLQ.EQ.1) THEN 

    

  F_FLAG=1    ; BLQ data 

  DUM1 = (LOQ-CGLU1)/SD1 
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  CUMD1 = PHI(DUM1) 

 

  Y=CUMD1 

  IRES=Y-CGLU1 

  IWRES=IRES/SD1 

 

 ENDIF 

 

 

$THETA   ; Fixed effects 

 (0, 1.35E-04)  ; TVK24 

 (0, 7.05E-04)  ; TVCL4 

 (0, 0.287)  ; TVV4 

 (0, 0.0412)  ; CV21 MTXGLU1 

 (0, 12.8)   ; ADV1 MTXGLU1 

 

 

$OMEGA   ; Between subject variability 

 0.405   ; BSVK24 

 1.210   ; BSVV4 

 

 

$SIGMA  ; Residual unexplained variability 

 1  FIX  ; EPS 

 

 

$EST NOABORT MAXEVAL=9990 SIG=3 PRINT=1 METHOD=1 INTERACTION 

LAPLACIAN NUMERICAL SLOW 

 

$COVARIANCE 
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A.5.3. Individual fits for the final parent model 

 

App Fig. 5.3.1: Individual fits obtained with the final parent model for MTXGlu1: ID1 to ID12. 
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App Fig. 5.3.2: Individual fits obtained with the final parent model for MTXGlu1: ID13 to ID24. 
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App Fig. 5.3.3: Individual fits obtained with the final parent model for MTXGlu1: ID25 to ID36. 
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App Fig. 5.3.4: Individual fits obtained with the final parent model for MTXGlu1: ID37 to ID48. 
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A.5.4. NONMEM code for the final reduced parent-metabolite model 

;RBC MTXPGs Simultaneous parent-metabolite model 

;combined data set BASED ON AVERAGE of replicate measurements 

;M6 to handle BLQ 

 

;2cmpt PK model for MTX based on article by Hoekstra et al. 

;(2004) 

;combined error model 

;first-order uptake and elimination from RBCs, elimination coded 

;as clearance 

 

;4 metabolites = MTXGlu2 - MTXGlu5 

;first-order FPGS fixed to values obtained by Morrison & Allegra 

;(1987) Model I, no BSV 

;first-order gGH estimated with BSV on gGH3-5 

;gGH cleaving one terminal glutamate moiety only 

;no elimination of metabolite 

;same VRBCs for all MTXPGs fixed to parent value, with BSV on 

;VGlu1, VGlu2 & VGlu5 

;only MCV as covariate on VRBCs 

;with BSV on CLGlu1 

 

 

$PROBLEM    PMGlu15 fixedFPGS&V M6 

 

$INPUT ID TIME AMT ROUTE II ADDL DVID CMTX OCC DV=AVE MDV 

EVID BLQ STUDY STARTSTOP RBC HB MCV HEIGHT WEIGHT AGE SEX 

    

$DATA  MTX_data.csv IGNORE=# 

IGNORE=(OCC.EQ.2,BLQ.EQ.1) 

    

$SUBROUTINE ADVAN5 

 

 

$MODEL      NCOMP=8  

 COMP=(ABS,DEFDOSE)  

 COMP=(PLASMA)  

 COMP=(PERIPH) 

 COMP=(RBCGLU1) ; Parent drug MTXGlu1 in RBCs 

 COMP=(RBCGLU2) ; Metabolite MTXGlu2 in RBCs 

 COMP=(RBCGLU3) ; Metabolite MTXGlu3 in RBCs 

 COMP=(RBCGLU4) ; Metabolite MTXGlu4 in RBCs 

 COMP=(RBCGLU5) ; Metabolite MTXGlu5 in RBCs 

 

 

$PK 

 ; COMPARTMENTS 

 IF(DVID.EQ.0) THEN 

  CMT=1  ; dose => absorption compartment 

 ELSEIF(DVID.EQ.1) THEN 

  CMT=4  ; observation => parent MTXGlu1 in RBCs 

 ELSEIF(DVID.EQ.2) THEN 

  CMT=5  ; observation => MTXGlu2 in RBCs 
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 ELSEIF(DVID.EQ.3) THEN 

  CMT=6  ; observation => MTXGlu3 in RBCs 

 ELSEIF(DVID.EQ.4) THEN 

  CMT=7  ; observation => MTXGlu4 in RBCs 

 ELSEIF(DVID.EQ.5) THEN 

  CMT=8  ; observation => MTXGlu5 in RBCs 

 ENDIF 

 

 

 ; LIMIT OF QUANTIFICATION 

 LOQ = 5  ; limit of quantification (nmol/LRBCs) 

 

 

 ; PLASMA PK FIXED: mean parameter estimates Hoekstra et al  

 

 IF(ROUTE.EQ.0) THEN  

  F1=0.7   ; oral dosing 

  K12 = 0.87   ; (/hrs) oral absorption 

  ALAG1 = 0.36   ; lag-time after oral  

 ELSEIF(ROUTE.EQ.1) THEN 

  F1=1    ; sc dosing 

  K12 = 0.36   ; (/hrs) sc absorption 

  ALAG1 = 0.06  ; lag-time after sc  

 ENDIF 

 

 K23 = 0.81  ; (/hrs) distribution into peripheral  

 K32 = 0.55  ; (/hrs) redistribution from peripheral  

 CL = 8.4  ; (L/hrs) 

 V2 = 9.6   ; (L) 

 K20 = CL/V2  ; (/hrs) elimination from plasma 

 

 

 ; COVARIATES 

 IF(NEWIND.LE.1) THEN  

  BMI = WEIGHT/((HEIGHT/100)**2)  ; BMI 

 ENDIF 

 

 IF(NEWIND.LE.1.AND.SEX.EQ.0) THEN  ; LBW females 

  LBW = (9270*WEIGHT)/(8780+244*BMI) 

 ENDIF 

 

 IF(NEWIND.LE.1.AND.SEX.EQ.1) THEN  ; LBW males 

  LBW = (9270*WEIGHT)/(6680+216*BMI) 

 ENDIF   

 

 

 ; RBC PK PARAMETERS FOR PARENT MTXGLU1 

 TVK24 = THETA(1)   ; kin 

 TVCL4 = THETA(2)    ; CLGlu1 

 TVV4 = THETA(3)*(MCV/90)  ; VGlu1 

 

 ; RBC PK PARAMETERS FOR METABOLITES MTXPGs 

 TVV5 = THETA(3)*(MCV/90)  ; VGlu2 

 TVV6 = THETA(3)*(MCV/90)  ; VGlu3 

 TVV7 = THETA(3)*(MCV/90)  ; VGlu4 

 TVV8 = THETA(3)*(MCV/90)  ; VGlu5 
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 TVK45 = THETA(4)  ; kFPGS Glu1->2 

 TVK56 = THETA(5)  ; kFPGS Glu2->3 

 TVK67 = THETA(6)  ; kFPGS Glu3->4 

 TVK78 = THETA(7)  ; kFPGS Glu4->5 

 

 TVK54 = THETA(8)  ; kgGH Glu2->1 

 TVK65 = THETA(9)  ; kgGH Glu3->2 

 TVK76 = THETA(10) ; kgGH Glu4->3 

 TVK87 = THETA(11) ; kgGH Glu5->4 

 

 

 ; RUV PARAMETERS 

 CV21 = THETA(12)  ; CV2prop - MTXGlu1 

 ADV1 = THETA(13)  ; ADV - MTXGlu1 

 CV22 = THETA(14)  ; CV2prop - MTXGlu2 

 ADV2 = THETA(15)  ; ADV - MTXGlu2 

 CV23 = THETA(16)  ; CV2prop - MTXGlu3 

 ADV3 = THETA(17)  ; ADV - MTXGlu3 

 CV24 = THETA(18)  ; CV2prop - MTXGlu4 

 ADV4 = THETA(19)  ; ADV - MTXGlu4 

 CV25 = THETA(20)  ; CV2prop - MTXGlu5 

 ADV5 = THETA(21)  ; ADV - MTXGlu5 

 

 

 ; BSV ON RBC PK PARAMETERS FOR PARENT MTXGLU1 

 K24 = TVK24*EXP(ETA(1)) 

 CL4 = TVCL4*EXP(ETA(2)) 

 V4 = TVV4*EXP(ETA(3)) 

 K40 = CL4/V4 

 

 ; BSV ON RBC PK PARAMETERS FOR METABOLITES MTXPGs  

 V5 = TVV5*EXP(ETA(4)) 

 V6 = TVV6 

 V7 = TVV7 

 V8 = TVV8*EXP(ETA(5)) 

 

 K45 = TVK45  

 K56 = TVK56  

 K67 = TVK67  

 K78 = TVK78  

 

 K54 = TVK54  

 K65 = TVK65*EXP(ETA(6)) 

 K76 = TVK76*EXP(ETA(7)) 

 K87 = TVK87*EXP(ETA(8)) 
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$ERROR 

 

 ; CONCENTRATIONS 

 CP = A(2)/V2  ; MTXGlu1 plasma concentration 

 CGLU1 = A(4)/V4  ; MTXGlu1 concentration in RBCs 

 CGLU2 = A(5)/V5  ; MTXGlu2 concentration in RBCs 

 CGLU3 = A(6)/V6  ; MTXGlu3 concentration in RBCs 

 CGLU4 = A(7)/V7  ; MTXGlu4 concentration in RBCs 

 CGLU5 = A(8)/V8  ; MTXGlu5 concentration in RBCs 

 

 

 ; RUV 

 SD1 = SQRT(CV21*CGLU1**2+ADV1) ; combined error MTXGlu1 

 SD2 = SQRT(CV22*CGLU2**2+ADV2) ; combined error MTXGlu2 

 SD3 = SQRT(CV23*CGLU3**2+ADV3) ; combined error MTXGlu3 

 SD4 = SQRT(CV24*CGLU4**2+ADV4) ; combined error MTXGlu4 

 SD5 = SQRT(CV25*CGLU5**2+ADV5) ; combined error MTXGlu5 

 

 

 ; PARENT MTXGLU1 

 

  Y=CGLU1+SD1*ERR(1) 

  IPRED=CGLU1 

  IRES=DV-CGLU1 

  IWRES=IRES/SD1 

 

 ; METABOLITE MTXGLU2 

 IF(DVID.EQ.2.AND.BLQ.EQ.0) THEN 

   

  Y=CGLU2+SD2*ERR(1) 

  IPRED=CGLU2 

  IRES=DV-CGLU2 

  IWRES=IRES/SD2 

   

 ENDIF 

 

 ; METABOLITE MTXGLU3 

 IF(DVID.EQ.3.AND.BLQ.EQ.0) THEN 

   

  Y=CGLU3+SD3*ERR(1) 

  IPRED=CGLU3 

  IRES=DV-CGLU3 

  IWRES=IRES/SD3 

   

 ENDIF 

 

 ; METABOLITE MTXGLU4 

 IF(DVID.EQ.4.AND.BLQ.EQ.0) THEN 

    

  Y=CGLU4+SD4*ERR(1) 

  IPRED=CGLU4 

  IRES=DV-CGLU4 

  IWRES=IRES/SD4 

   

 ENDIF 
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 ; METABOLITE MTXGLU5 

 IF(DVID.EQ.5.AND.BLQ.EQ.0) THEN 

   

  Y=CGLU5+SD5*ERR(1) 

  IPRED=CGLU5 

  IRES=DV-CGLU5 

  IWRES=IRES/SD5 

   

 ENDIF 

 

 

$THETA   ; Fixed effects 

 

 (0, 2.27E-04)  ; TVK24 

 (0, 1.48E-03)  ; TVCL4 

 0.3 FIX   ; TVV4 

 

 0.171 FIX   ; TVK45 polyglutamation 

 0.344 FIX   ; TVK56 polyglutamation 

 0.097 FIX   ; TVK67 polyglutamation 

 0.141 FIX   ; TVK78 polyglutamation 

 (0, 0.174)  ; TVK54 deglutamation 

 (0, 0.192)  ; TVK65 deglutamation 

 (0, 0.243)  ; TVK76 deglutamation 

 (0, 0.299)  ; TVK87 deglutamation 

 

 (0, 0.0334)  ; CV21 MTXGLU1 

 (0, 35.5)   ; ADV1 MTXGLU1 

 (0, 0.0460)  ; CV22 MTXGLU2 

 (0, 7.22)   ; ADV2 MTXGLU2 

 (0, 0.0139)  ; CV23 MTXGLU3 

 (0, 39.6)   ; ADV3 MTXGLU3 

 (0, 0.0644)  ; CV24 MTXGLU4 

 (0, 3.82)   ; ADV4 MTXGLU4 

 (0, 0.0779)  ; CV25 MTXGLU5 

 (0, 2.25)   ; ADV5 MTXGLU5 

 

$OMEGA   ; Between subject variability 

  0.482    ; BSVK24 

  0.401    ; BSVCL4 

  0.101    ; BSVV4 

  0.104    ; BSVV5 

  0.233    ; BSVV8 

  0.284    ; BSVK65 

  0.174    ; BSVK76 

  0.059    ; BSVK87 

 

$SIGMA  ; Residual unexplained variability 

 1  FIX    ; EPS 

 

  

$EST  NOABORT MAXEVAL=9990 SIG=5 PRINT=5 METHOD=COND  

 INTERACTION  
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A.5.5. Individual fits for the final reduced parent-metabolite model 

 

App Fig. 5.5.1: Individual fits obtained with the final reduced PM model for all MTXGluX: ID1 to ID6. 
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App Fig. 5.5.2: Individual fits obtained with the final reduced PM model for all MTXGluX: ID7to ID12. 
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App Fig. 5.5.3: Individual fits obtained with the final reduced PM model for all MTXGluX: ID13 to ID18. 
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App Fig. 5.5.4: Individual fits obtained with the final reduced PM model for all MTXGluX: ID19 to ID24. 
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App Fig. 5.5.5: Individual fits obtained with the final reduced PM model for all MTXGluX: ID25 to ID30. 
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App Fig. 5.5.6: Individual fits obtained with the final reduced PM model for all MTXGluX: ID31 to ID36. 
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App Fig. 5.5.7: Individual fits obtained with the final reduced PM model for all MTXGluX: ID37 to ID42. 
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App Fig. 5.5.8: Individual fits obtained with the final reduced PM model for all MTXGluX: ID43 to ID48. 
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A.6.1. NONMEM code for the final updated parent-metabolite model 

;RBC MTXPGs Simultaneous parent-metabolite model 

;combined data set BASED ON AVERAGE of replicate measurements 

;M6 to handle BLQ 

 

;2cmpt PK model for MTX based on article by Hoekstra et al. 

;(2004) 

;combined error model 

;first-order uptake and elimination from RBCs, elimination coded 

;as clearance 

 

;4 metabolites = MTXGlu2 - MTXGlu5 

;first-order FPGS fixed to values obtained by Morrison & Allegra 

;(1987) Model I, no BSV 

;first-order gGH estimated with BSV on gGH3-5 

;gGH cleaving one terminal glutamate moiety only 

;elimination of all metabolites equal to elimination of parent 

;drug 

;same VRBCs for all MTXPGs fixed to parent value, with BSV on 

;VGlu1, VGlu2 & VGlu5 

;only MCV as covariate on VRBCs 

;with BSV on CLGlu1 

 

;eGFR and BSA as covariates on renal plasma clearance, 

;allometrically scaled WT on non-renal plasma clearance 

 

 

$PROBLEM    PMGlu15 fixed Hyp18h 

 

$INPUT ID TIME AMT ROUTE II ADDL DVID CMTX OCC DV=AVE MDV 

EVID BLQ STUDY STARTSTOP RBC HB MCV HEIGHT WEIGHT AGE SEX 

ABCB1rs10 SLC19A1rs10 ABCC2rs22 ABCC1rs35A1 ABCC1rs35A2 

ABCC1rs37A1 ABCC1rs37A2 ABCC2rs41A1 ABCC2rs41A2 GGHrs11A1 

GGHrs11A2 ABCG2rs17A1 ABCG2rs17A2 

    

 

$DATA  MTX_data_genotypes.csv IGNORE=# 

IGNORE=(OCC.EQ.2,BLQ.EQ.1) 

    

 

$SUBROUTINE ADVAN5 

 

$MODEL      NCOMP=8  

 COMP=(ABS,DEFDOSE)  

 COMP=(PLASMA)  

 COMP=(PERIPH) 

 COMP=(RBCGLU1) ; Parent drug MTXGlu1 in RBCs 

 COMP=(RBCGLU2) ; Metabolite MTXGlu2 in RBCs 

 COMP=(RBCGLU3) ; Metabolite MTXGlu3 in RBCs 

 COMP=(RBCGLU4) ; Metabolite MTXGlu4 in RBCs 

 COMP=(RBCGLU5) ; Metabolite MTXGlu5 in RBCs 

 

 



Appendix to Chapter 6 

313  

  

$PK 

 ; COMPARTMENTS 

 IF(DVID.EQ.0) THEN 

  CMT=1  ; dose => absorption compartment 

 ELSEIF(DVID.EQ.1) THEN 

  CMT=4  ; observation => parent MTXGlu1 in RBCs 

 ELSEIF(DVID.EQ.2) THEN 

  CMT=5  ; observation => MTXGlu2 in RBCs 

 ELSEIF(DVID.EQ.3) THEN 

  CMT=6  ; observation => MTXGlu3 in RBCs 

 ELSEIF(DVID.EQ.4) THEN 

  CMT=7  ; observation => MTXGlu4 in RBCs 

 ELSEIF(DVID.EQ.5) THEN 

  CMT=8  ; observation => MTXGlu5 in RBCs 

 ENDIF 

 

 ; LIMIT OF QUANTIFICATION 

 LOQ = 5  ; limit of quantification (nmol/LRBCs) 

 

 ; COVARIATES 

 IF(NEWIND.LE.1) THEN  

  BMI = WEIGHT/((HEIGHT/100)**2)  ; BMI 

  BSA = SQRT((WEIGHT*HEIGHT)/3600)  ; BSA (m^2) 

 ENDIF 

 

 IF(NEWIND.LE.1.AND.SEX.EQ.0) THEN  ; LBW females 

  LBW = (9270*WEIGHT)/(8780+244*BMI) 

 ENDIF 

 

 IF(NEWIND.LE.1.AND.SEX.EQ.1) THEN  ; LBW males 

  LBW = (9270*WEIGHT)/(6680+216*BMI) 

 ENDIF   

 

 FE = 0.81    ; fraction renal elimination 

 

 ; PLASMA PK FIXED: mean parameter estimates Hoekstra et al  

 

 IF(ROUTE.EQ.0) THEN  

  F1=0.7   ; oral dosing 

  K12 = 0.87   ; (/hrs) oral absorption 

  ALAG1 = 0.36   ; lag-time after oral  

 ELSEIF(ROUTE.EQ.1) THEN 

  F1=1    ; sc dosing 

  K12 = 0.36   ; (/hrs) sc absorption 

  ALAG1 = 0.06  ; lag-time after sc  

 ENDIF 

 

 K23 = 0.81  ; (/hrs) distribution into peripheral  

 K32 = 0.55  ; (/hrs) redistribution from peripheral  

 

 CLRENAL = FE*8.4*(EGFR/100)*(BSA/1.73)*THETA(22) 

 CLNONRENAL = (1-FE)*8.4*(WEIGHT/75)**0.75 

 CL = CLRENAL + CLNONRENAL  ; total clearance (L/hrs) 

 V2 = 9.6   ; (L) 

 K20 = CL/V2  ; (/hrs) elimination from plasma 
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 ; RBC PK PARAMETERS FOR PARENT MTXGLU1 

 TVK24 = THETA(1)   ; kin 

 TVCL4 = THETA(2)    ; CLGlu1 

 TVV4 = THETA(3)*(MCV/90)  ; VGlu1 

 

 ; RBC PK PARAMETERS FOR METABOLITES MTXPGs 

 TVV5 = THETA(3)*(MCV/90)  ; VGlu2 

 TVV6 = THETA(3)*(MCV/90)  ; VGlu3 

 TVV7 = THETA(3)*(MCV/90)  ; VGlu4 

 TVV8 = THETA(3)*(MCV/90)  ; VGlu5 

 

 TVK45 = THETA(4)  ; kFPGS Glu1->2 

 TVK56 = THETA(5)  ; kFPGS Glu2->3 

 TVK67 = THETA(6)  ; kFPGS Glu3->4 

 TVK78 = THETA(7)  ; kFPGS Glu4->5 

 

 TVK54 = THETA(8)  ; kgGH Glu2->1 

 TVK65 = THETA(9)  ; kgGH Glu3->2 

 TVK76 = THETA(10) ; kgGH Glu4->3 

 TVK87 = THETA(11) ; kgGH Glu5->4 

 

 ; RUV PARAMETERS 

 CV21 = THETA(12)  ; CV2prop - MTXGlu1 

 ADV1 = THETA(13)  ; ADV - MTXGlu1 

 CV22 = THETA(14)  ; CV2prop - MTXGlu2 

 ADV2 = THETA(15)  ; ADV - MTXGlu2 

 CV23 = THETA(16)  ; CV2prop - MTXGlu3 

 ADV3 = THETA(17)  ; ADV - MTXGlu3 

 CV24 = THETA(18)  ; CV2prop - MTXGlu4 

 ADV4 = THETA(19)  ; ADV - MTXGlu4 

 CV25 = THETA(20)  ; CV2prop - MTXGlu5 

 ADV5 = THETA(21)  ; ADV - MTXGlu5 

 

 ; BSV ON RBC PK PARAMETERS FOR PARENT MTXGLU1 

 K24 = TVK24*EXP(ETA(1)) 

 CL4 = TVCL4*EXP(ETA(2)) 

 V4 = TVV4*EXP(ETA(3)) 

 K40 = CL4/V4 

 

 ; BSV ON RBC PK PARAMETERS FOR METABOLITES MTXPGs  

 V5 = TVV5*EXP(ETA(4)) 

 V6 = TVV6 

 V7 = TVV7 

 V8 = TVV8*EXP(ETA(5)) 

 

 K45 = TVK45  

 K56 = TVK56  

 K67 = TVK67  

 K78 = TVK78  

 

 K54 = TVK54  

 K65 = TVK65*EXP(ETA(6)) 

 K76 = TVK76*EXP(ETA(7)) 

 K87 = TVK87*EXP(ETA(8)) 
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$ERROR 

 

 ; CONCENTRATIONS 

 CP = A(2)/V2  ; MTXGlu1 plasma concentration 

 CGLU1 = A(4)/V4  ; MTXGlu1 concentration in RBCs 

 CGLU2 = A(5)/V5  ; MTXGlu2 concentration in RBCs 

 CGLU3 = A(6)/V6  ; MTXGlu3 concentration in RBCs 

 CGLU4 = A(7)/V7  ; MTXGlu4 concentration in RBCs 

 CGLU5 = A(8)/V8  ; MTXGlu5 concentration in RBCs 

 

 ; RUV 

 SD1 = SQRT(CV21*CGLU1**2+ADV1) ; combined error MTXGlu1 

 SD2 = SQRT(CV22*CGLU2**2+ADV2) ; combined error MTXGlu2 

 SD3 = SQRT(CV23*CGLU3**2+ADV3) ; combined error MTXGlu3 

 SD4 = SQRT(CV24*CGLU4**2+ADV4) ; combined error MTXGlu4 

 SD5 = SQRT(CV25*CGLU5**2+ADV5) ; combined error MTXGlu5 

 

 ; PARENT MTXGLU1 

 

  Y=CGLU1+SD1*ERR(1) 

  IPRED=CGLU1 

  IRES=DV-CGLU1 

  IWRES=IRES/SD1 

 

 ; METABOLITE MTXGLU2 

 IF(DVID.EQ.2.AND.BLQ.EQ.0) THEN 

   

  Y=CGLU2+SD2*ERR(1) 

  IPRED=CGLU2 

  IRES=DV-CGLU2 

  IWRES=IRES/SD2 

   

 ENDIF 

 

 ; METABOLITE MTXGLU3 

 IF(DVID.EQ.3.AND.BLQ.EQ.0) THEN 

   

  Y=CGLU3+SD3*ERR(1) 

  IPRED=CGLU3 

  IRES=DV-CGLU3 

  IWRES=IRES/SD3 

   

 ENDIF 

 

 ; METABOLITE MTXGLU4 

 IF(DVID.EQ.4.AND.BLQ.EQ.0) THEN 

    

  Y=CGLU4+SD4*ERR(1) 

  IPRED=CGLU4 

  IRES=DV-CGLU4 

  IWRES=IRES/SD4 

   

 ENDIF 

 

 ; METABOLITE MTXGLU5 

 IF(DVID.EQ.5.AND.BLQ.EQ.0) THEN 
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  Y=CGLU5+SD5*ERR(1) 

  IPRED=CGLU5 

  IRES=DV-CGLU5 

  IWRES=IRES/SD5 

   

 ENDIF 

 

$THETA   ; Fixed effects 

 

 (0, 5.91E-05)  ; TVK24   

 (0, 2.94E-04)  ; TVCL4 

 0.3 FIX   ; TVV4 

 

 0.171 FIX   ; TVK45 polyglutamation 

 0.344 FIX   ; TVK56 polyglutamation 

 0.097 FIX   ; TVK67 polyglutamation 

 0.141 FIX   ; TVK78 polyglutamation 

 (0, 0.169)  ; TVK54 deglutamation 

 (0, 0.189)  ; TVK65 deglutamation 

 (0, 0.241)  ; TVK76 deglutamation 

 (0, 0.296)  ; TVK87 deglutamation 

 

 (0, 0.0322)  ; CV21 MTXGLU1 

 (0, 36.7)   ; ADV1 MTXGLU1 

 (0, 0.0460)  ; CV22 MTXGLU2 

 (0, 7.53)   ; ADV2 MTXGLU2 

 (0, 0.0142)  ; CV23 MTXGLU3 

 (0, 38.8)   ; ADV3 MTXGLU3 

 (0, 0.0643)  ; CV24 MTXGLU4 

 (0, 3.73)   ; ADV4 MTXGLU4 

 (0, 0.0787)  ; CV25 MTXGLU5 

 (0, 2.16)   ; ADV5 MTXGLU5 

 

 0.106   ; covariate effect eGFR & BSA 

 

$OMEGA   ; Between subject variability 

  0.320    ; BSVK24 

  0.169    ; BSVCL4 

  0.104    ; BSVV4 

  0.119    ; BSVV5 

  0.268    ; BSVV8 

  0.295    ; BSVK65 

  0.177    ; BSVK76 

  0.0238    ; BSVK87 

 

$SIGMA  ; Residual unexplained variability 

 1  FIX    ; EPS 

 

$EST  NOABORT MAXEVAL=9990 SIG=5 PRINT=5 METHOD=COND  

 INTERACTION  
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A.6.2. Individual fits for the final updated parent-metabolite model 

 

App Fig. 6.2.1: Individual fits obtained with the final updated PM model for all MTXGluX: ID1 to ID6. 
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App Fig. 6.2.2: Individual fits obtained with the final updated PM model for all MTXGluX: ID7 to ID12. 
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App Fig. 6.2.3: Individual fits obtained with the final updated PM model for all MTXGluX: ID13 to ID18. 
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App Fig. 6.2.4: Individual fits obtained with the final updated PM model for all MTXGluX: ID19 to ID24. 
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App Fig. 6.2.5: Individual fits obtained with the final updated PM model for all MTXGluX: ID25 to ID30. 
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App Fig. 6.2.6: Individual fits obtained with the final updated PM model for all MTXGluX: ID31 to ID36. 

  



Appendix to Chapter 6 

323  

  

 

App Fig. 6.2.7: Individual fits obtained with the final updated PM model for all MTXGluX: ID37 to ID42. 
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App Fig. 6.2.8: Individual fits obtained with the final updated PM model for all MTXGluX: ID43 to ID48. 
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